NASA CR 170615

+=SULTS OF DATA BASE MANAGEMENT SYSTEM

FARAMETERIZED PERFORMANCE TESTING
RZLATED TG GSFC SCIENTIFIC APPLICATIONS

(MASA-CE~-1706 15} RESULTS CF LATA BASE NES-17T741
MANAGEMENT SYSTEM PAEAMET:.RIZED PERFUBMANCE

TESTING RELATED TIC GSEC SCIiENTIFIC

4PPLICATICNS (Business ana leckanclogical inclas
Systews, Inc.) 250 p HC A11/BF 301 CSCL O05E G3/82 17305

JUNI 0, 1963

Prepared By

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.
AEROSPACE BUILDING, SUITE 440

10210 GREENSBELT ROAD

SEABROOK, MARYLAND 20706

‘/c.rol H. Carchedi, Thomas L. Gough, Herbert A. Huston

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND 20771

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

RTS2-82-45/rd
1021

30 June 1983

RESULTS OF DATA BASE MANAGEMENT SYSTEM
PARAMETERIZED PERFORMANCE TESTING
RELATED TO GSFC SCIENTIFIC APPLICATIONS

Carol H. Carchedi
Thomas L. Gough
Herbert A. Huston

Prepared under
Contract No. NAS 5-26728

for

NATIONAL AERONAUTICS AND >PACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
Greenbelt, Me-yland 20771

by
RUSINESS AND TECHNOLOGICAL SYSTEMS, INMC.
Aercspace Buyilding. Suite 440
1n210 Greenbelt Road
Seabrook, Maivland 20706

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

FOREWORD

This document summarizes the results of a variety of tests designed to
demonstrate and evaluate the performance of several commercially available
Data Base Management System (DBMS) products compatibie with the Digital
Equipment Corp. VAX 11/780 computer system, The tests were performed on
the INGRES, ORACLE, and SEED DBMS products employing applications that were
similar to scientific applications under development by NASA. The objec-
tives of this testing included determining the strengths and weaknesses of
the candidate systems, performance trade-offs of various design alterna-
tives, and the impact of some installation and environmental (computer
related) influences.

The study has been conducted under the technizal direction of Regina
V. Sylto of NASA's Information Extraction Division (IED) and her predeces-
sor Elizabeth A, Martin. The document has been prepared by Thomas L. Gough
(Project Manager), Carol H. Carchedi, and Herbert A. Huston of Business and
Technological Systems, Inc. The authors wish to express their appreciation
to Ms. Sylto and James Patrick Gary, also of the IED, for assistance in the
final preparation of the document. In addition, the authors wish to thank
Regina L. Barlow, of BTS, for her outstanding job of typing, editing, and
preparing the document.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

1.0

2.0

TABLE OF CONTENTS

FoREuORD G020 00085000000 0800 0000000000080 060000000000006080000000

INTRODUCTION 06006000000 0006000 0000000600000 0600060000060006060000000
1-1 Scope Of Tests IR NN NNNI NN NN RN NN NN NI RN NN N R N

1-2 TeSt Environment 0000 0000000000000 00008080000000000000000

1.2.1
1.2.2
1.2.3
1.2.4

1.2.5

VAX Computer System Configurationc.ccececceee
Standalone vs. Contention Testing ececeecececsces
HLI vs. Interactive .cccececescssceccsccscaccnnes
Influence of NASA Requirements on

Test SeqUeNCiNg .ecececccersecccccscascannncnncs
Terminology and Concepts cccceseccccanaes cee
1.2.5.1 VAX/VMS Terms ...cccecessccscssccsccccsss
1.2.5.2 Application Program Terms .ceeececcccces
1.2.5.3 DBMS Specific Terms .ccececesccccsoccces

1.2.6 Reporter Statistics vs. VAX Accounting File

1.3 Sumar_y Of Tests XA R RN N EE NN E NN EN NN NN ENE N RN RENERNEXN]

1.4 Organization of Nocumenteeceececscccscsccscscsccss

LEVEL 1 DATA BASE PERFORMANCE TESTING .cccecececccans ceeccses
2.1 Record/Fie]d A]ternatives T 0O COOORESLEDOOEOSIOSRSIEDNBOEOSEISIOESERSIBDTES

2.2
2.3

2.1.1
2.1.2
2'1.3

2.1.4
Record
Direct
2.3.1
2.3.2
2.3.3

Fie]d Size G000 P 000 0POPDPISNOCEPIOECESICEESISINONOIONOIOOSEOEOSOOEOSPEOSEDS

Number of FieldS .iceeecescceccncscaceccanscnacne
Field Type ceeeseccesscescaccaccccasasesnscsccses
2.1.3.1 Field Type - Test I ceceeveccacnscnanses
2.1.3.2 Field Type - Test Il tceeveccecsacnnnnes
Field Size vs. Number of FieldS .cccevcrccncesnas
StruCtUreS civececsesscscsccssssssessscsscsccnsee
Access ATternativeS .eceeecscsccccescssscscacsnes
Direct Access Overhead ...c.eeeeoescscsssccscssse
Key Length ..esveececrccrcossassscscscosscacancsnse
Key Duplication ceeeeescecccceccscccncssccnss coes

ii

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

TABLE OF CONTENTS (cont'd)
Page

3.0 LEVEL 2 DATA BASE PERFORMANCE TESTING cscecceccccccccccaccsses 3=1
3.1 Contention With Other USersS ..cceeeescccccascscsscssscces 3=2
3.1.1 Contention With Non-DBMS USers ..e.eeocescccveccess 3=2
3.1.2 Contention With DBMS USers .cccecececesccccccscess 3-13
3.1.2.1 Users Contending for the
Same Data Base ..ccceeecevcccsccccccess 313
3.1.2.2 Users Contending for
Different Data BasesS ..cecesscsssescces 3-23
3.1.3 Contention Between Query and Load ...cceeccccccsse 3-29
3.2 DBMS System and Computer System Options .c..eeeeceececcess 3-30
3.2.1 DBMS System Parameters ceeecesccceccccsssssssccces 3-31
3.2.1.1 ORACLE DBMS System Parameterscceese 3-31
3.2.1.1.1 Buffering cceceeccccesccscscss 3-31
3.2.1.1.2 Space OJefinition eceeecesess.. 3-34
3.2.1.1.3 Clustering ceececesccascsscces 3-36
3.2.1.1.4 Loading Alternatives (ODL) ... 3-43
3.2.1.2 SEED DBMS System Parameters .cceececcecss. 3-44
3.2.1.2.1 Journaling ..ceeecescecssseses 3-45
3.2.1.2,2 Alternate Hashing Technique .. 3-46
3.2.1.2.3 Buffering eceeeececcsccescaseecss 3-47
3.2.1.3 INGRES DBMS System Parameters c.eceececees 3-49
3.2.1.3.1 Secondary Indices .eeveeseee.. 3-49
3.2.1.3.Z Heap vs. Yash vs. ISAM ,...... 3-52
3.2.1.3.3 Journaling ...cceeseececssecss 3-54
3.2.1.3.4 Loading Alternativesee... 3-55
3.2.2 Computer Operating System Parameters ecccceeeceeess 3-58
3.2.2.1 Impact of VAX/VMS Behavior on
DBMS Performance scecessssscscssssscses 3-58
3.2.2.2 Working Set SiZ€ .ceceecsssscsccssssseccee 3-62
3.2.2.3 Disk Al10cCation ceaveeveveessssssssssaess 3-64

1iid

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

TABLE OF CONTENTS (cont'd)
Page
4.0 SUPPLEMENTAL TESTING cucveccvcscecsccaccscccsscscscccsanacces 4-1
4.1 Alternative Data Base DeSignS .eeeeccecescenccesascccscns 4-1
4,1.1 ORACLE Version 2.3.1 cecieeeesccnncscaccsssscsscns 4.2
4,1.1.1 Load Performance - Prototype Design ,... 4.2
4.1.1.2 Load Performance - Dual Load ceeeececese 4-5
4.1.1.3 Load Performance - Reduced Number
of Indexed FieldS .s.ccceencecescncncns 4-7
4,1,1.4 Load Performance - Reduced Number
Of FieldS ceceecesnccccceccassocccasas 4-12
4,1.1.5 Query Performance ..ccecececccsssssascnss 4.13
4,1.2 SEED Version B.11.9 cceeeeeecccacnccccccccascscns 4-15
4.1.2.1 Load Performance - Prototype Design 4-16
4.1.2.2 Load Performance - Reduced Number of
"Owner" ReCOrds .sccececececccccsccenas 4.21
4.1.2.3 Lload Performance - Increased Number of
"Owner" ReCOrds eceecesccccsscsccccces 4-24
4,1.2.4 Load Performance - Reduced Number of
Record TYPeS ceecececscsscsncasssosasne 4-° 5
4,1,2.5 Query PerformanCe eceeecsvececcccscessse 4.26
4,1,3 SEED Version C.00.02 cvceacecncoscccccacccacancns 4-30
4.1.3.1 Load Performance - Prototype Design 4-30
4,1.3.2 Load Performance - Use of
Pointer Arrays (IndicesS) .eereevececes 4-31
4,1.3.3 Query Performance - Use of
Pointer Arrays (IndiceS) eeececccccess 4-33
4,2 DBMS Performance on Enlarged Data Base .ecevecsncesassce 4-35
4.3 Basic Load and QUEPRY cececsceceoscrscascsctonasscnsennas 4.47
4.4 Predicate Reordering cececceccsccescceccoscsssnssassasses 4-55
4,5 Effect of Ordering the Output from a UEry .eeececeeesse 4-60

4.6 Nested Queries P8 0PN OICSPOP LS PEEONCLOENOOOERNBIOEPIOSEOEOOOOOONOS 4—63
Appendix I 920 08 .0 0800000000000 800000002008 000006000000sBc00SGOREIIS 1-1
Appendix II e e P00 00 POEN LB B 00PN RIDSRPOROORREIRNIPIORGEN0EOO0SSIOIITISITIEITDS II"I

Appendix III 00 00 B P LRSS 0000000000030 0630000030000 000000000000000cs III-l

Appendix Iv (AN ENENEENNEENEENNEENENERENNNNNEENN RN NN NN NN NN NN NN NN NN Iv-l

iv

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

1.0 INTRODUCTION

As part of a non-operational technology demonstration program, NASA's
Office of Aeronautics and Space Technology (OAST) is conducting a DNata
Systems Technology Program (DSTA}, formerly known as NASA End-to-End Data
System (NEEDS), to demonstrate more efficient and timely transfer of data
from the sensor to the user, for extraction of information by the user, and
for exchange of information among users. Complementing the DSTA effort,
NASA's Office of Space Science and Application (0SSA) is studying its data
management workload with respect to a broad climate research program and
has identified, among other things, data management requirements to support
investigators within that program. The Information Extraction Division
(IED) of Goddard Space Flight Center has numerous responsibilities
associated with these two efforts, including the determination of a viable
approach to maintaining and providing access to the various needed data
bases. The IED has acquired several candidate Data Base Management System
(DBMS) software packages for possible use in these efforts.

In order to evaluate these and future DBMS systems, this document
defines a variety of tests which have been implemented to provide objective
measures for evaluation of various aspects of DBMS performance. The
purpose of this document is to report the results of these tests, not to
summarize or draw conclusions from the tests. Also, the document was
written to aid NASA in evaluating the performance of various data hase
designs applied to a number of NASA/GSFC scientific applications.
Therefore, the DBMS performance testing specifications have been slanted to
aid in the DBMS selection by using relevant NASA applications as the
testbeds for the conduction of the tests.

The implementation of these test plans has initially been done to
assist in the evaluation of three commercially available DBMSs, ORACLE,
SEED, and INGRES, which operate on the NEC VAX 11/780 computer. Because
this document is not intended as a tutorial, familiarity with and
understanding of data base models, particularly the network and relational

1-1

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

models, is necessary. Prior experience in using, or knowledge of, any of
the three commercial products used in this testing is also desirable as an
aid to increased understanding of the tests performed and the results
documented,

1.1 Scope of Tests

The tests are directed at a variety of features that are frequently
present in a general purpose data base management system. DNBMS software
has been developed in varying forms from various data base models for
numerous applications. Implementations are based on hierarchical data
models, network models, relational models, and other hybrid designs. Each
approach may accomplish its goals in a different manne~, but almost all are
designed to collect information, present it to people or programs, and to
update and delete it. A specification of tests, which are intended to
measure DBMS performance in a manner which supports the comparison of one
system to another, must not attempt to define test details which are too
system specific. For example, if one were to define a test standard for
measuring automobile performance, one would not wish to define ¢ test which
specifies the operation of a clutch pedal, because cars with automatic
transmissions could not be included in such a test. Rather, one might wish
to define such a test only to the point which describes the engagement of a
gear which gives power to the drive wheels. Similarly, the wide variety of
DBMS implementations requires that a test specification be general enough
that it does not preclude its application to many DBMSs. An exception to
this policy may occur when unique or radically variant features are present
in a particular DBMS which must be addressed on an individual basis.

The specifications that are provided in Sections 2 and 3 deal with two
different levels of testing. The first level deals with variations in data
base structure and design, while the second level is devoted both to the
impact of other data base and CPU users and to the tuning of data base and
system parameters.

1-2

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Two NASA applications, the Packet Management System (PMS) and the
Pilot Climate Data Base Management System (PCDBMS), are under development
and require the use of a DBMS to support their data management needs.
Because of the scientific nature of the targeted data base applications,
certain DBMS capabilities have been emphasized over others. For example, a
typical NASA DBMS application might be one containing large volumes of
"static" data, as in the PMS applicacion. That is, the data base may
contain scientific data which, once entered into the data base, requires
very few changes. In this application, load and access performance is
important, with emphasis on load performance. On the other hand, in an
application where the data to be stored in the data base is
“meta-informational" in nature (i.e. the data base consists of information
about information, such as a catalog or directory), the information in the
data base is subject to frequent change. The PCDB system is such an
application. Here, update and delete performance must be assessed in
addition to access rates, which are of utmost importance.

A large number of factors exist that influence DBMS performance. To
identify and test all of these factors in combination and to determine
their inter-relationships was considered beyond the scope of this plan for
both schedule and budgetary reasons. Instead, these test specifications
attempted to isolate a particular factor to determine its impact alone.
The factor of data base size was de-emphasized in this specification
because of prior work done in the evaluation of Du.iS performance for the
Information Extraction Division at GSFC. This work is described in a
document entitled, "Data Base Management System Analysis and Performance
Testing with Respect to NASA Requirements." In that report, a methodology
is detailed for data base performance evaluation, which concentrates on
general DBMS capabilities as a function of data base size.

These tests are quantitative in nature and are not designed to identi-
fy qualitative aspects of the systems under study. The results of these
tests should not only provide a basis for system selection in the IED
applications but should also provide a basis for predicting the impact of
various data base designs under consideration using a single DBMS.

1-3

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

1.2 Test Environment

1.2.1 VAX Computer System Configuration

The test results summarized in this document were all generated from
one of two DEC VAX 11/780 computer systems which were located at the
Goddard Space Flight Center. The experimenters were somewhat at the mercy
of the facility managers and an evolving hardware environment in this
regard.

Initially, testing was begun on the MPP (Massively Parallel Processor)
VAX 11/780 computer system. It was configured with three megabytes of
memory and a variety of peripherals. Because the testing done on the MPF
was done entirely in a controlled stardalone mode, the relevant factor in
the computer configuration was that the disk devices used to maintain the
cata base files and test software were RPO6 units connected to the CPU by a
singls mass bus adapter. The operating system used during this testing was
the VAX/VMS Version 2.2.

Tests were later shifted to the PC (Pilot Climate) VAX 11/780 computer
system where approximately eighty percent of the tests described in this
document were perfu med. This computer system began with the VAX/VMS
Version 2.2, was upgraded to VMS Version 2.5, and was >ventually upgraded
to WS Version 3.2. As these upgrades were installed, a few selected
benchmark tests were repeated and no significant variations in performance
were noted in the test results., The disk drive configuration was also
upgraded during the course of the benchmark testing, beginning with two
RP06 devices with the later addition of an RPO7 512 megabyte disk device.
From limited test iteration, no significant biases were noted due to
changes in the disk configuration, primarily because the tests were
performed in a standalone mode and the drives had similar seek and access
rates. The PC VAX system was configured originally with two megabytes of
main memory. About six months into the testing on the PC VAX, the memory
was increased to four megahytes.

1-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

In summary, the test environment has been subject to alteration beyond
the control of the experimenters but the biases of these variations have
been monitored and are not felt to have contributed significantly to the
measured results, thus minimally impacting the validity of any conclusions
which might be drawn from the study.

1.2,2 Standalone vs. Contention Testing

A1l testing reported in this document was conducted in either a
standalone mode or in a controlled contention mode. In most testing, it is
necessary to control the environment so that valid comparisons can be
made. The only way to ensure this system control is to obtain sole use of
the computer system. The exceuption to this is in the testing for impact of
contention on DBMS performance. Even in the contention testing, the runs
were made in a standalone environment so that the only contention present
was that introduced for the purpose of testing by those conducting the
test. In other words, the contention was controlled. Unless specifically
stated otherwise in this document, all testing was performed in a
standalone environment,

1.2.3 HLI vs. Interactive

Most available DBMSs possess an interactive data manipulatinn language
(OML) and query language and a parallel set of capabilities that can be
invoked through an interface between the DBMS and a high level language
such as FORTRAN or COBOL. These latter interface capabilities are
frequently referred to as the Host Language Interface (HLI). In an effort
to measure the variation in performance between an interactive DML and an
HLI program performing the same function, various tests were conducted. 1In
each of the three cases (CRACLE, SEED, and INGRES), neither the interactive
DML nor the HLI program appeared to outperform the other. For this reason,
the tests reported in this document were conducted using the HLI orly to
reduce the time required to gain results. This approach was further
warranted because of the de-emphasis on the direct use of the DBMS provided
query facilities in the preliminary designs of the PMS and PCDBMS
applications.

1-5

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

1.2.4 Influence of NASA Requirements on Test Sequencing

The primary goal of the PMS application is to load 7 packetized header
records per second into a data base. When testing was begun on the PMS
application, no formal data base design had been developed. Therefore, a
"prototype" design was initially used for testing. At that time, GRACLE
2.3.1 (and later 2.3.2) and SEED B.11.9 had been acquired and therefore,
testing was performed using these two DBMSs. Variations in data base
design were introduced on the “prototype" in an attempt to reach the goal
of loading 7 header records per second,

It was intended that the results of this initial testing would be used
as input for formulation of the actual PMS data base design, and indeed,
this was the case. These preliminary results were responsible for design
changjes which are documented in Appendix I of this report.

In the PCDB application, the query rates are the primary concern of
the data base developers. Therefore, while load rates were still of
interest, testing focused on querying and various DBMS specific options
available in querying (e.g. predicate ordering, sorted output, query
nesting).

Throughout the testing, each time a new DBMS was acquired (or a new
version of an existing DBMS), the testing was performed using the newest
release. Some tests were repeated when it was believed that a new release
of an existing DBMS might show significant improvement over an older
version. The time and budgetary restrictions, however, dictated that not
all tests could be performed using all versions of all DBMSs,

1.2.5 Terminology and Concepts

This section is devoted to giving the reader a clearer understanding
of some of the terms and concepts included in this report. The section is
further divided into VAX/VMS terms, applications terms, and DBMS spwcific
terms.

1-6

Business AND TECHNOLOGICAL SYSTEMS, INcC.

1.2.5.1 VAX/VMS Terms

N\ discussion of the statistics which are presented in this document is
appropriate here. The term connect time refers to the actual wall clock
time which has elapsed. The CPU (Central Processing Unit) time is that
amount of time which has actually been devoted to the processing of a
task. A direct I/0 is "an I/0 (input/output) operation in which the system
locks the pages containing the associated buffer :n memory for the duration
of the 1/0 operation. The I/0 operation takes plare directly from the
process buffer."* A buffered 1/0, on the other hand, is "an 1/0 operation
(e.g. terminal or mailbox I/0) in which an intermediate buffer from the
system buff>r pool is used instead of a process-specified buffer."* A page
fault is "an exception (interruption of the normal flow of instructions)
generated by . reference tn a page which is not in the process' working set
(set of pages in memory)."*

1.2,5.2 Application Program Terms

In the PMS {Packet Management System), a packet is a unit of data from
a spacecraft sensor or from a user which is to e archivei, Each packet is
prefixed by a packet header which identifies and describes that packet.
This information is also stored. The header contains information such as
mission ID, sensor ID, and source data format. The reader is referred to
Appendix I for mc e information. A PMS burst is & group of packets. When
the PMS data is being received for input to the data base, it will be
transmitted a roup or burst at a time. For this testing, a burst was
identified as 72 header packets.

1.2.5,3 DNBMS Specific Terms

This section is further broken down by DBMS, but not by version within
that DBMS.

* Taken from the "VAX/VMS Summary Description”, DEC, August 1978,

1-7

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORACLE DBMS

When a batch job is submitted which employs the ORACLE DBMS, a series
of detached processes are created. DUetached processes are subprocesses
created by ORACLE and owned by the ORACLE account. In ORACLE Version 2.3,
a agetached process performs all of the DBMS related tasks. The batch job,
or host job, performs the non-DBMS related tasks and the calls to the
ORACLE routines. In ORACLE 3.0, while detached processes are still
created, the host job performs most of the work.

In some of the ORACLE 3.0 testing, reference is made tov an "olu" space

definition and a "rew" space definition. These refer to the "initial" and

“redefined" space definitions, respectively, as discussed in detail in
Section 3.2.1.1.2 of this report. Unless specifically stated otherwise,
the ORACLE 3.0 testing was performed using the new, or redefined, space
definition,

An ORACLE page is equal to two VAX/VMS pages. In other words, an
ORACLE page is 1,024 bytes.

An ORACLE buffer, -r cache buffer refers to an internal buffer area

used by ORACLE to increase the likelihood that often used pages are
available in menory, thus eliminating the need for a disk 1/0 operation.

When reference is made to records being deleted in ORACLE Version 3.0,
the reader should note that ORACLE deletes records logically, but in the
current configuration, does not physically delete the records.

SEEDN DBMS

The SEED data hase designer has direct control over the number of
pages in an area and size of the pages. An area is the physical
subdivision of the data hase. In other words, an area is a file. The
nunber of pages and size of the pages are specified in the schema
definition., The only restriction on the page is that it must be a multiple
of the VAX block size of 512 bytes {or 256 words). A SEED buffer is
defined as the size of the largest page.

1-8

BusingsS AND TECHNOLOGICAL SYSTEMS, INC

INGRES DBMS

As with the ORACLE DBMS, the INGRES DBMS creates a detached process
when a batch job is submitted. A detached process is a subprocess.
However, in INGRES, the detached process is owned by the host process'

account, not by the INGRES account.

1.2.6 Reporter Statistics vs. VAX Accounting File

Two methods were used in presenting the results contained in this
document. A brief explanation of each is given here.

The first method was the use of software vhich called the VAX system
service routine GETJPI, and then produced a listing containing total
connect time, total CPU time, total number of direct [/0's, and total
number of page faults. The measurements did not include the opening and
closing of the data base, nor did they include any preliminary FORTRAN code
necessary for the successful operation of the software. The neasurenents
did include, however, any other calls to data base routines, data base
activity, and any other data base related FORTRAN code (such as formation
of the primary key in the PMS annlication). In general, this was the
preferred method of reporting results because only the data base related
activity was measured. However, only the host process’ activity was
included in the "reporter" measurements. Any detached process activity was
not included. In ORACLE 2.3 for exanmple, the detached processes perfora
all of the data hase related activity, so the statistics reported in this
file are not a true indication of the actual measurements. The total
connect time is the exception. Because the wall clock time is measured
regardless of whether the host or detached process is performing the work,
it is a true measurement in all NBMSs,

Because of the problem with reporting anything bhesiaes total connect
time when using DBMSs which create detached processes, it was nece sary to
report some of the measurements using the VAX system accounting file, which
keeps a log of all of the processes running on the system. This includes

the batch processes and detached processes created by them. For each

1-9

BUssngss anD TECHNOLOGICAL SYSTEMS, INC

process, the total connect time, in seconds {in a later VMS version,
hundredths of seconds), is given, along with the total CPU time in
hundredths of seconds, the total number of direct I/0 operations, the total
number of buffered 1/0's, and the total number of pajge faults. In DBMSs
where a detached process is created by a batch job, the connect time
reported is the higher of the connect time for the host job and detached
process, while the CPU time, direct I/0's and page faults are the sum of
those for the host process and the detached process. The measurements are
given for the entire life of the process, so that in addition tc the data
base related activity mentioned in the discussion of the "reporter” file,
the opening and closing of the data base along with non-data base related
FORTRAN code is measured.

While this is not as desirable as the “"reporter” statistics because
more than just data base related activity is measured, where necessary
these statistics have been presented. Unless specifically stated
otherwise, the results presented in this document have been extracted from
the “reporter” file.

1.3 Summary of Tests

The purpose of this section is to summarize, briefly, the results
which are presented in detail in the remaining sections of this document.
In keeping with the intent of the report, no attempt is made to draw
conclusions from the results.

The summary is presented in table form. The first column identifies
the test performed. The remaining columns contain a code which represents
the significance of the variation in results of the test performed as
applied to each of the DBMSs under which it was conducted. There is one
column for each of the following DBMSs - ORACLE 2, ORACLE 3, SEED, and
INGRES. A blank space in any column indicates that the test was not
performed using that DBMS. For a more specific version number, the reader
is referred to the section containing the actual results of the test.

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

As mentioned above, the code represents the level of significance of
the test on the performance of the DBMS. This level of significance was
obtained from the "% Degradation" over a base scenario. The actual "%
Degradation" (or a similar statistic) appears in most of the tables
throughout the document. This percent was calculated by subtracting the
results of the base run and the test run, and then dividing by the base
run. The appropriate sicn identifiec whether there was improvement or
degradation in the test run over the base run.

Three levels of significance and a code "NC" appear in the table. The
code “NC" stands for no correlation and indicates that for the particular
test performed, no trend in performance 3ppeared to exist. The three
levels of significance are signified by "L", "M", and "H". When the %
degradation (or variation) between results was less than 10%, the
significance of the test on data base performance was considered low, or
"L*. If the percentage was between 10 and 20, the level was interpreted as

-"M", for medium. Finally, if the percentage was greater than 20, the test
which was performed was determined to have had a very significant or high
("H") impact on the data base performance.

The reader should be very careful in internreting and comparing the
resuits presented in the tables and throughout the report. The data base
management systems are quit2 different (because for example, the network
and relational concepts are quite different), and the test that was
performed for one DBMS may not have been exactly the same test which was
performed for another DBMS. The reader is referred to the specific
sections of the report, where data base designs are described and where
actual tests are cefined.

The tables on the following pages summarize the tests which were
performed and are documented in the remaining sections of the report. The
tests appear in the same order as they do in the report. The tables are
divided hy section, with the section headings appearing above each table.
The "Test Nescription” colurin defines the test and indicates what kind of

measurement is reported (i.e. Load, Query, etc.). This column also states

BUSINESS AND TECHNOLOGICAL SYSTENS, INC

the appropriate sub-section numbers within the document. The levels of
significance appear in the columns following the description. The levels
are lefined below each table. In columns where a range appears (for
exa:ple, L-M), the level of significance may vary according to the exact
ter.. For instance, in the test for "Number of Fields" in the first table,
Uk~CLE 2 showed an L-M level of significance in both the load and query.
The actual results in Section 2.1.2 show that for 1, 2, and 3 fields, the
level of significance was low, but that the DBMS performance was moderately
affected by the introduction of 7 fields. An "*" appearing next to the
lev 21 of significance indicates that proper selection of the parameter
te:ted impacts the level of significance of that parameter on DBMS
performance. For example, in ORACLE 3 clustering, the performance may be
greatly improved by creating the proper cluster. However, the performance
may be greatly degraded by selection of an unsuitable cluster.

As stated previously, the reader is urged to examine the actual
resuits of the tests in addition to using these tables as a guide to

performance,

..4 Organization of Document

The document is divided into four sections. In addition to this
Section 1 introduction, Section 2 describes the first level of testing and
Section 3 describes the second level of testing. The format used in these
two sections includes a general description of a test plan and purpose
followad by a description of the specific schema and test results for any
DBMSs which hav. been subjected to that particular test. This approach was
chasen bc-ise of the ease with which new DBMSs (or new versions of
existi~g systems) could be subjected to one or more of the tests and be
addeu to this document. In addition, another section has been added to
“‘his report. Section 4, titled "Supplemental Testing" is further divided
by test. In thi, section, any additional testing that was performed which
did not fall under headings in either Section 2 or Section 3 is reported.
This in-ludes, but is not limited to, further variations on schema design
and alternate methods of querying the data base.

=12

(99U848)4 1P wuZ <) UbbH=H (82U8JOJJLP wu2-UT) WNLP3L-H (92UdJa441p WUT >) MOT-"| UOLIR[3JJO) O-9y

H 1 Ka3n) (2°2 uor3yd99)
W 1 peoT
ubtsag aseg eiey 40 A31xa|dwo)

H=1 1 Ayan((p*1°2 uo13295)
1 H=W peot

(8344 =91 °*sA 31hg g-g °*SA 33hg 9I-p °SA
83AY $9-1) SPL3L4 JO JAQuNy °*SA dZIS P|at4

1 H=W peot (p°1°2 voL323s)
(9344 t-21 °sA 91Ay g-9 *SA 3alhg 91-¢)
Splatd 40 JAQUNN °*SA BZIS p|aL4

IN N Kaang (2°€°1°2 voL3133s)

N N N peo
(el °SA 2x1) (2120 *8x2 “tx) ‘240 Y “txl ‘2«1) 2dAL plaL4
N 1 N Kaany (1°€°1°2 uoL323s)

1 1 IN peoq

(2x3 *SA 241) adAl plat4

IN W= W-1 Aaany (2°1°2 uoi1233)
=N W=1 W-1 peo1
(x¢ *xg *xz *x1) splatd j0 Jaquny
N H=1 Kaany (1°1°2 uvo11233)
1 ON peoq
(s234g 1€ °SA 02 °SA Q1) 9ZIS P(3L4
SIYYNI 0313s £ 370vaL 2 370vH0 uo}3dyudsag 3say

BuSINESS AND TECHNOLOGICAL SYSTENS, INC.

SIYNLONYLS UH0I3Y¥ UNY S3IATLYNYILTV U1314/08003Y
ONILSAL T 13N

1-13

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

(32U84334 1P %02 <) UDBIH-H

(3duddazs1p %02-01)

WNLPpay= (9DUBUBS4LP %0T >) MOT-T UOLIR[AUJO) Of-=IN

W W 1-0N 93313y (€7¢°2 uo11295)
IN =N 1=IN ai1epdp
1=ON T=ON 1= peo’
(,3uelSuU0D ‘ajgeLaen,
*SA ,9[QPLJRA “3UPISUCD)
an|ep pakay J4ajdedey) jO uotiedt|dng |eLidegd
=N 1 IN IN J= il 3338 |38y (¢°5°2 uvoL10eg)
T=ON W= IN T=UN T=0N ajepdp
T=0N IN W1 1= ON 1= peoT
(x01 “xg °xz “Xx1)
anep pakay J430633u] 40 uvotriedL|dny
N ON 1-0N KJdany (2°¢*¢ uoL103s)
g 1 IN peoT
(sa1/hy 21 °*SA g *sA §) uzbuay Aay
H H H W N 8393((1°¢°2 u01303s5)
H H H H H ajepd
W=1 W H H H peo
(paxaput
*SA paxapul Jou plaL4) abesn A3y jo peayJanag
Xapu] pJ0I3Y
S3YYNI u33s € ovdy Z 310VH0 uot3druosay 1s3)

SIATLYNYILTY SS3IVVV 103410

UNILSIL T 3t

(85UB43341P %02 <) UBLH-H (39u343431P %02-01) WNLPAK-W (3DUJAS4LP %0T >) MOT-1 UOLIR|IJIO) ON-DN

(€°1°g uoL329s)
H Aaanp
H=W peod

peo y A43an) uaamiag UuO[IUSIUO)

(2°2°1°¢ uoL323s)
H=~W H=W Kaand

g0 3IUsJ334LQ
i} 9WRS Ul SJBSM SWYU YILm UOLIUdUO)

(1°2°1°¢ vo1323%)

H H H H sJasfy 61
H H H H sJasn 01
H H H H SJasl §

gy SWeS UL SJISO SUEQ YILM UOLIUIIUOD)

(1°1°¢ vo1123%)

H H H H 9| tdwo) NvY¥L¥04 ¥ Satdand g
H H H H a(tduo) Nyyldod 7 A4and 1

H = ON3ddV LV¥3d3Y
W - Ad0J H H 1 g{1duo) NYY1¥04 5 peol

SJBS() SHYU-UON YILM uOL3uaIuo)

S3IUUNI EE £ 370vd0 ¢ 310vd0 uoLldiddsay 3say

BUSINESS AND TECHNOLOGICAL SYSTENMS, INC

SY3ISN ¥IHLO HLIM NOILINILINOD
ONILS3L ¢ 13N

-15

ajuedLjLubLs Jo |9Ad| Ss3oedwi uoLydd|as dadoud -
(9ouduayip %02 <) UBLH-H (9oUdJajs4Lp %02-01) WNLP3W-W (3DUdJ3JLP %01 >) MO~ UOLIE[34JO) ON-IN

(g 1°2°c uoi3das) (p°1°1°2°c u01323S)

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

H = peO7
SoALjeudadl |y buipeo

(¢°g°1°2°¢ u0130as)

xH - Aduang
HYS] °SA HSYH °SA dV3H
(€°g 12 ¢ voi1d8s)

W = peROT
bul leuunop
(1°g°1°¢'¢ vo1123s)

T-0N = Adan

SadLpul Auepuocag

(2°¢°1°¢°g uo1323s)

JN = peO7
wytdobly Butysey
(1°2°1°¢"¢ uot3yoas)

H - peoT
but euuanop
(¢°¢°1°2°¢ u013295)

xH - peOT
(6£°06°0G) °*sSA

(001°00T°001) °*sA (06°04°0S)

burusysng

1-ON - peo?

peol Qv

(€°1°1°¢°¢ uoL323s)

xH=1 - Auany
xH=1 - peoq

butruaisni)

(2°1°1°2°¢ uoL129s)

1 - peoq
(pautjapay
*SA 3{neya(y) uoLjiutliey aoeds

(1°1°1°2°¢ uo13235)

1-IN - Auanj
H - peol
(s4333ng
0UZ SA 00T SA 0G) Buraayyng

SI¥UNI

u3as

1SRNV

SYILIWVYYd WILSAS SKEd
ONILSAL 2 13AT7

1-16

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

{92UBU8 1P WuE <) UbLH-H

(90U 41D LUZ=UT) WNLpay-i

(92U843441p %UT >) MU= UOLIR(3J40) ON-DK

(g2 ¢°¢ uo1329s)

H peo
uoLledofly xstd
(2°¢ 2°¢ uot323g)
L T=0N peoq
Az1§ 195 buiydopm
W= "3LuLdy d¢ (1°2¢°2°¢ uo11295)
-—l
1 *1Lulay 0N Hd peo
JOLARYIY SKA/XVA UL uoLleLJRA
SIYINI a33s £ 370vd0 ¢ 310vdL uot3dLadsag 31say

SYILIWVHVd WILSAS ONILVIIAO YILNdWOD

UNILS3L ¢ TN

1-17

aouedtyLubts 4o (3431 s3oedul uotldaias Jadoud
(80uauayyip 402 <) UBLH-H (@2UaJa331p %02-01) WNLPAW-IW (32UdU344LP 20T >) MO~ UOLIR(34JO] ON-IN

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

H H Kaan() (5°¢y uo1323S)
nding po3Jos
1 1 Kaany (¢°p uotr1das)
buLJapdoay ajedLpadd
IN N S321pu] 33313y (2°¢ uotr1oas)
IN IN Kaan(
IN IN S9JLpuU] aj3ead)
IN IN peol
(oot<0s) 3sey eieqg pabae(u3
»H IN IN Kaan(y (1°¢ voLyd3g)
=H H H-W peo?
(1 °SA € *SA ¢) Splaly pakay 40 Jaquny
Xapu] pJ0od23Yy
SIYINI ¢33s € 379vyd0 ¢ 310Vd0 uo11d1J4d3sag 1s3)

YUNILSHL TVINIWIT4diS

1-18

BUSINESS AND TECHNOLOGICAL SYSTENMS, INC

2.0 LEVEL 1 DATA BASE PERFORMANCE TESTING

The Level 1 testing consists primarily of measuring the performance
impact of alternative data base designs. The variety of alternatives in
a DBMS data bu:e design is dependent upon the flexibility offered by its
schema specification. A DBMS offering more options for schema
specification naturally has an increased number of alternative designs
possible for the data base and vice versa. Also associated with the Level
1 test plan are the specification of tests to assess the impact on indexing
overhead and performance for fields of differing lengths and with different
degrees of duplicate values present. All Level 1 testing was performed in
a standalone environment using the PMS application.

2.1 Record/Field Alternatives

Information to be managed by a DBMS normally consists of groups of
logically related items. One occurrence of a group is often referred to as
a data record, and each item is considered a field within the record. An
example might be a company's employee record with fields containing name,
social security number, address, and wage rate. A DBMS may or may not
manage the records presented to it in a manner that maintains the external
form, order or adjacency. Schema design for a given application may
require that some fields in the external records (i.e. input data records)
be broken into separate records* internally to facilitate direct access or
to minimize redundancy. For this reason, the term record and field must be
clearly defined when mentioned in terms of a DBMS. In the context of this
document the terms record and field apply to the externally managed data.
When internal records are different, they will be identified as such in
future discussions. If the terms are used to refer to the internal items,
it will be so stated.

* The term records may not always be used by a NDBMS but is intended here to
refer generically to a logical collection of fields that are defined in
the data base schema to comprise a sinyle entity such as a "tuple" or row
in the relational model or member and owner in a CODASYL system.

2-1

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The following tests are dedicated to identifying the impact of
different size records and field specifications, in terms of the number of
fields and the number of bytes of data present.

2.,1,1 Field Size

To determine the effect of field size on performance, a set of tests
were designed in which a given field was first loaded with values which
were all ten byte character strings. Values from this field were later
retrieved, The test was repeated with twenty byte character strings
instead of ten and then with thirty-one byte character strings. The tes
were performed using a PMS-1ike application (see Appendix 1) in which the
MESSAGE field was used as the test variable., A total of 5,000 PMS headers
were inserted into the data base and a total of 250 MESSAGE values were
retrieved for each test.

ORACLE Version 2.3.2 Results

The table structure used for these tests is summarized by the
following:

HEADER Table

raaiMARY_KEY* MID_SIN*{TIME*|UIC|SDF |MESSAGE | HEADER

*Indexed Field

2-2

BuUsSINESS ANU TECHNOLOGICAL SYSTEMS, INC.

The average connect time for loading headers is summarized in the

following table:

ORACLE LOAD RESULTS

MESSAGE Field Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Inserticn Rate
10 Byte Character 3.169 -—-
20 Byte Character 3.115 +1,7
31 Byte Character 3.1€0 + .09

These results show no significant impact in loading performance over the
range of field sizes chosen for the test. The fact that the thirty-one
byte character string was inserted, on an average, faster than the twenty
byte character string is attributed to variations in the operating
system,not to the data base software.

The query which was repeated 250 times for each of the three cases is
defined, and access rates are summarized below. The total connect time and
average response time were der. «d from the reporter file, while the total
CPU time was obtained from the VAX account file, where the corresponding
connect times for the three runs (from the account file) were 62., 62., and

72, seconds, respectively.

SELECT MESSAGE FROM HEADER WHERE PRIMARY KEY =

2-3

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

ORACLE QUERY RESULTS

Total Total

Average % Degradation | Connect CPU
Response Time in Average Time Time

MESSAGE Field (Sec) Resporse Time (Sec) (Sec)

10 Byte Character .15 -— 37.72 38.14
20 Byte Character .15 - 37.87 37.55
31 Byte Character .20 +33.3 48,94 43,95

There does appear to be a signifi_ant degradation in response ir the third
case. Test results indicated that an increase in CPU time was the cause of
the degradation in the 31 byte character retrieval.

SEED Version C.00.02 Results

A diagram of the schema used for this testing is shown below.

SEEDN Schema

R1 _MIDSID R2_TIME R3_SDF

R4_PKEY

RS_MESSAGE

The RS _MESSAGE record consisted of one field, MESSAGE, which was

defined ¢s a 10 Byte Character, 20 Byte Character, and 31 Byte Character
field for the thre2 test runs, respectirciy.

2-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Five thousand header records were first loaded into a PMS-like data
base. The average number of headers loaded per second (connect time) for
each of the three runs is shown in the table below.

SEED LOAD RESULTS

Average % Degradation
MESSAGE Field Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
10 Byte Character 5.03 -—
20 Byte Character 5.00 + .6
31 Byte Character 4.86 +3.4

While the trend of degradation appeared as the MESSAGE field size
increased, the maximum degradation of 3.4% is not very significant. One
explanation for this might be that the data base size remained constant for
the three cases, while the record size of RS MESSAGE varied, therefore
causing more SEED page overflows.

The method used to access the message field was to do a sequential
search (OBTNAP) on the first 5% of the RS MESSAGE records. (See Appendix
II1) 1t appears, by looking at the results in the following table, that
the queries are not significantly impacted by the length of the field.

SEED QUERY RESULTS

Average % Degradation Total Total

Response Time| in Average (Connect Time{CPU Time
MESSAGE Field {Sec) Response Time (Sec) (Sec)
17 Byte Character .007 -—- 1.84 1.51
20 Byte Character .008 +14.3 1.89 1.52
31 Byte Character .007 --- 1.36 1.44

2-5

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

While there is a slight variance in the total connect time for the
three runs, the mean response times are almost identical; that is, the
va, iations are insignificant and probably due to variations in the
operating system software. While the "% Degradation in Average Response
Time* for the 20 Byte Character run shows a 14.3X degradation, the
degradation in total connect time is only 2.7%. The reason for the large
degradation (14.3%) in average response time is that {hose averages have
been rounded to three decimal places.

2.1.2 Number of Fields

To determine the effect of the number of fields present on the DBMS
performance, a set of tests were designed in which the number of fields was
changed each time. Each test loaded the data base and later retrieved a
number of records from the data base. A PMS-like application (see Appendix
I) was used for the tests. UIC field values were used as the repeated
fields. Initially there was a single UIC field made up of two byte integer
(I*2) variables. The test was repeated with a second UIC field, renamed of
course, but with the same data values. Then it was repeated with a total
of three UIC fields and finally with a total of seven fields. A total of
5,000 PMS headers were loaded each time and 250 queries were made of each
data base.

ORACLE Version 2.3.2 Results

The table structures used for these tests are summarized by the
following:

Business oD TECHNOLOGICAL SYSTEMS, Iwc.

HEADER Table

A) |PRIMARY KEY*|MID SID*|TIME*|UIC|SDF |MESSAGE | HEADER

HEADER Table

8) |PRIMARY KEY*|MID SID*|TIME*|UIC|SDF |MESSAGE |HEADER|UIC2

HEADER Table

C) |PRIMARY_KEY*IMID_SID*|TIME*|UIC|SDF |MESSAGE [HEADERJUIC2{UIC3

HEADER Table

N) |PRIMARY KEY*IMID SID*|TIME*[UIC]SPFIMESSAGE |HEADER|UIC2]VIC3|VICA

UICS|UICHIVICT

*Indexed fField

The value in the UIC field is repeated in the added UIC"X" fields present.
The query used thru the HLI to retrieve information retrieves all
information in a data base row. The query used is:

SELECT * FROM HEADER WHERE PRIMARY KEY =

The load results are summarized in the following tahle which shows the
average insertion rate in headers per second for each of the tests:

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

ORACLE LOAD RESULTS

No. of UIC Fields Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Insertion Rate
1 3.166 —
2 3.015 + 4.7
3 2.929 + 7.5
7 2.680 + 5.4

The results indicate a consistent degradation in performance as more fields
are added. Note that none of the fields added are indexed so the
degradation is attributable to the addition of the field only. The
percentage of degradation is noted in the table and shows how significant
the impact is.

The results of the queries are summarized below for each of the data
bases in the form of average response time:

ORACLE QUERY RESULTS

No. of UIC Average Response Time % Degradation in
Fields (Sec) Average Response Time
1 .2n -——-
2 .20 ---
3 .21 + 5.0
7 .23 + 15,0

it 1s apparent that these results also show a trend of degradation
associated with the retrieval of the additional UIC fields. (The percent
of degradation column is determined by using the single UIC field test as a

baseline.)
2-8

BUSINESS D TECHNOLOGICAL SYSTENS, Ivc.

Another set of tests described in the rext section (Section 2.1.3.1)
also illustrates the degradation in both loading and response when
additional character fields are added in the same manner as the integer
fields which were added in these tests.

ORACLE Version 3.0 Results

As in ORACLE 2.3, the header structure for the baseline run of one
Integer*2 UIC field is shown below.

HEADER Table

PRIMARY_KEY*|MID_SID*|TIME*|UIC{SDF {MESSAGE | HEADER

® Indexed Field

For the runs with 2, 3, and 7 UIC fields present, tihe table is
identical to the one above except for the addition of the UIC fields. In
all cases, the UIC field is non-indexed.

In running these tests, the space definition which was initially used
was the old space definition described in Section 3.2.1.1.2. However, when
a problem was encountered for the 7 UIC field run, the space definition was
redefined to what is referred to as the new space definition. Because of
the results in Section 3.2.1.1.2, the results presented here for the 7 UIC
field run are probably "best case" results, as the redefined space
definition was shown to have a small, positive effect on performance.

The results of loading the 5,000 record PMS-1ike data base appear

below. The statistics are given in average number of headers inserted per
second,

2-9

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

ORACLE LOAD RESULTS

No. of UIC Average Irsertion Rate % Degradation in
Fields (Hdrs/Sec) Average Insertion Rate
1 5.04 -—-
2 4.76 + 5.6
3 4.64 + 7.9
7 4.28 + 15.1

A steady degradation in performance appears as more fields are added
to the header record. The same type of behavior appears to exist in
querying the data base. Those results are shown below and are given in
average response time in seconds. The query which was executed was:

SELECT * FROM HEADER WHERE PRIMARY KEY =

The query was performed 250 times, or for 5% of the records in the data

base.
ORACLE QUERY RESULTS
No. of UIC Average Response Time % Degradation in
Fields (Sec) Average Response Time
1 N9l -—-
2 .N93 + 2.2
3 .N95 + 4.4
7 101 + 11,0

While the percent of degradation is not as great in querying as in
loading, it still does appear, and the user should be aware that the
addition of fields to a record may produce some degradation in both loading
and querying.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED Version C.00.02 Results

The structure of the data base used to perform this testing is shown
below:
SEED Schema

R1_MIDSID R2_TIME R3_SDF
! -
y 7
a{R4_PKEY [~
R5_MESSAGE

The UIC field(s) were present in the R4 PKEY record. Fach field was
defined as an Integer*2, named UICl, UIC2, etc. None of the UIC fields
were “CALC"ed.

The query that was used to retrieve the 250 R4_PKEY Records was to
form the primary key, and "CALC" to the proper record (OBTNC) (See Appendix
I11).

The load results are shown in the table below.

SEED LOAD RESULTS

No. Average % Degradation in Total Total
of UIC| Insertion Rate jAverage Insertion Rate {Connect Time|CPU Time
Fields (Hdrs/Sec) (Sec) (Sec)

1 4,74 --- 1,054,93 538,27

2 5.04 -6.3 992.01 535.29

3 4,73 + .2 1,057.16 537.52

7 4,92 -3.8 1,016.25 548.33

T
?JSANDTEumwuﬂcnuLSnntnslmn

By looking at the column titled "Average Insertion Rate", it seems
that there is no correlation between the number of fields present and the
load rates. However, the "Total CPU Time" column shows, that while the CPU
times for the 1 field, 2 fields, and 3 fields runs do not vary
significantly, when seven fields are added, the load rate does suffer
somewhat. ,

The results of querying on 250 R4 PKEY records are shown below.

SEED QUERY RESULTS

No. of| Average % Degradation Total Total % of Total
UIC |Response Time| in Average |}Connect Time|CPU Time|Connect Time
Fields (Sec) Response Time (Sec) (Sec) |Devoted to CPU
1 .07 -— 17.78 9.39 53
2 .09 + 28.6 23.30 9.49 41
3 .07 -— 17.35 9.31 54
7 .06 - 14.3 16.06 9,32 58

In this table, it appears that the average response time is better for
the run with seven fields than the other runs. By looking at “Total CPU
Time," there does not appear to be any degradation in retrieving a record
through "CALC"ing to it, by having more fields present. After the main
task of locating the beginning of the desired record is completed, the time
to actually access the record is minimal and is not affected significantly
by the length of the record. A direct I/0 is issued for the record,
independent of its length, In the run with two fields, the total CPU time
is about 1-2% higher than the other CPU times. A table showing the total
number of direct 1/0's for each of the four runs follows. Looking at the
number of direct 1/0's issued shows that for the two field run there were
424 direct 1/0's, where in the other three runs *here were from 374 to 383
direct 1/0's, This increase could account for the increase in total CPU
time,

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED QUERY RESULTS

No. of UIC Total No. of
Fields Direct 1/0's

1 374

2 A24

3 383

7 379

2.1.3 Field Type

DBMSs can manage data in a variety of forms including integer data as
in the preceding section's UIC field, as real or floating point values, and
as character data, to name the principal ones. To assess a variation in
performance due to a field's data type, several tests were designed and
conducted. In each test design, a PMS-like application (see Appendix I)
was used,

A set of tests similar to those in the preceding section were
designed. The exception was to replace the integer data in the UIC fields
with two byte character strings. The same loads and retrieves performed
before were repeated so that both sets of test results could be compared to
determine the difference, if any, in performance.

ORACLE Version 2.3.2 Results

As stated above, the same data base structure was used in these tests
as was used in Section 2.1.2 with the exception that the various UIC fields
were defined as character and not integer. The results of correspondingly
similar tests (i.e. tests with equivalent numbers of UIC fields) should
reveal impacts of the different data types.

2-13

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The table below summarizes the average insertion rates for the
corresponding tests:

ORACLE LOAD RESULTS

Average Insertion Rate
(Hdrs/Sec) % Improvement
No. of Integer over Character
UIC Fields Character*2 Integer*2
1 3.141 3.166 + .8
2 3.077 3.015 -2.0
3 2.988 2.929 -2.0
7 2.708 2.680 -1.0

These results show that no statistically conclusive evidence exists to
indicate that there is a significant difference between the two sets of

tests.

The query results are summarized in a similar fashion below showing

the average response times:

ORACLE QUERY RESULTS

Average Response Time
(Sec) % Improvement
No. of Integer over Character
UIC Fields Character*2 Integer*2
1 -18 020 ‘11.1
2 .21 .20 + 4,8
3 .20 .21 - 5.0
7 .23 .23 -—-

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Like the load results, the query results demonstrate no evidence to support
the conclusion that there exists a marked difference in performance due to
data type alone.

ORACLE Version 3.0 Results

The data base design used in this testing was identical to that
described in Section 2.1.2 except that the UIC fields were defined as 2
byte character fields instead of 2 byte integer fields. Also as in Section
2.1.2, the old space definition was used for the testing of 1, 2, and 3
fields while the new space definition was used for the 7 field run.

In the table below, the average number of PMS header records inserted
per second is shown for character vs. integer data for each of the four
tests conducted, along with the percent difference between the two types of
data for each test.

ORACLE LOAD RESULTS

Average Insertion Rate
(Hdrs/Sec) % Improvement
Integer over Character

No. of UIC Fields| Character*2 Integer*2

1 5.12 5.04 -1.h
2 4.97 4,76 -4.2
3 4,76 4.64 ~2.5
7 4.54 4,28 -5.7

A slight improvement appeared in each case when the UIC field type was
defined as character instead of integer type data.

The same type of table appears below comparing query results when UIC
was defined as character versus integer,

2-15

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORACLE QUERY RESULTS

Average Response Time
(Sec) % Improvement
Integer over .Lnaracter

No. of UIC Fields| Character*2 Integer*2

1 087 .N91 - 4.6
2 .086 093 - 8.1
3 .088 095 - 8.

7 093 .101 - 8.6

As in the load, the average response time in each case was slightly
better for the character fields as opposed to the integer fields.

In any ORACLE field which has been defined as NUMBER (i.e. when VIC is
1*2), each time an insert operation is performed, the value to be inserted
into the table is converted to ORACLE'S internal storage format. This
format is variable length extended precision floating point format.
Likewise, each time a select operation is pe: .ormed, ORACLE must convert a
NUMBER field from internal storage format to external format. On the other
hand, ORACLE stores character type data in ASCII, so no conversion is
necessary on inserts or selects.

If conversion can be considered an explanation for the differences
noted above, cne would expect to see the difference appear in CPU time as
opposed to I/0 operations or page faults. Relow, two tables appear which
show the total statistics for character versus integer data in both the
load and query runs.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

ORACLE LOAD RESULTS

No. of Total Total Total Total

uIcC VIC Connect Time CPU Time Direct Page
Description|Fields (Sec) (Sec) ‘ 1/0's Faults
1 975.83 656 .66 10,923 26,743
Character 2 1,005.35 685.01 11,044 27,357
3 1,050,71 714.35 11,181 30,717
7 1,101.00 770.60 10,910 20,936
1 992.39 661.17 10,847 25,510
Integer 2 1,049.95 703.70 11,168 28,720
3 1,078.38 737.47 11,165 28,815
7 1,167.09 830.12 11,181 23,527

ORACLE QUERY RESULTS

No. of Total Total Total Tocal

uIC 1) {o Connect Time CPU Time Direct Page
Description|Fields (Sec) (Sec) 1/0's Farlts
1 21.68 13,91 537 2,416

Character 2 21.4¢p 13.77 524 «,606

3 22,08 13.87 528 2,227

7 23.13 14.23 537 2,262

1 22.87 14.85 525 2,754

Integer 2 23.34 15.30 511 2,502
3 23.64 15.46 517 2,718

7 25.21 16.56 522 2,882

2-17

BUSINESS AND TECHNOLOGICAL SYs_ o2 S, INC.

While, in both tables, the total number of direct I/0's and page
fauits vary and do not seem dependent on the UIC data type, the total CPU
time is consistently higher when UIC was defined as integer than when it
was defined as character.

While the actual differences in “Average Insertion Rate" and "Average
Response Time" between character and integer fields are small, indicating
very little true variance between the two cata types, the pattern does
exist and should be noted. While the evidence supporting the conversion
theory is not conclusive, this may be a contributing factor in the
differences which appeared.

SEED Version C.00.02 RESULTS

The design of the aata base used in this testing was identical to the
c:5ign in the previous section with the exception that the UIC field(s)
were designated as Character*2 instead of Integer*2., The same query was
executed in this testing, Because the results in the previous section
showed that there was no impact of number of fields on response time, a new
query was designed and tested to see if it better measured the impact of
additional fields. [In this query, the primary key is formed, and then a
sequential scarch (OBTNAP) is done on .5% of the R4_PKEY records. (See
Appendix II1) The results of both types of queries appear in the table
showing query results.

The following table shows a comparison between the load rates for one
to seven UIC fields of Character*2 and Integer*2 data type.

2-18

BUSINESS +ND TECHNOLOGICAL SYSTEMS, INC

SEED LOAD RESULTS

Average Insertion Rate
(Hdrs/Sec) % Improvement
No. of UIC Integer over Character

Fields Character*2 Integer*2

1 4.83 4.77 - 1.2

2 5.11 5.07 - .8

3 5.11 4.77 - 6.7

7 5.14 4,97 - 3.3

The results in the table show that there is degradation in loading
integer type data as opposed to character tyne data. However, the

difference is slight and might be attributed to cperating system software
variations.

In the table below, the results of the previous query on Integer*2

type data is compared with the results of the two types of queries

performed on the Character*2 data.

Results are given in average respon;e

time,
SEED QUERY RESULTS
Average Response Time
(Sec) Improvement
No. of Integer
UIC Character*2, | Character*2, | Integer*2, over
Fields | Seq. Search Calc PKEYs Calc PKEYs Character
1 17.3 .07 o07 -
2 177 N7 N9 - 28.6
3 17.9 N7 N7 ~--
7 17.2 07 N6 + 14.3

2-19

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

While the two figures in the "X Improve .nt" column indicate large
differences in response time between character and integer type data for
two and seven fields, respectively, these figures should be examined more
closely. In the table below, the average CPU time (as opposed to connect
time) is shown for the character data vs. the integer data for from one to
seven UIC fields.

SEED QUERY RESULTS

Average CPU Time

(Sec) % Improvemert
Integer
No. of Character*2,| Integer*2 over

VIC Fields}Calc PKEY's | Calc PKEY's Character

1 .037 .038 - 2.7
2 .038 .038 —
3 .037 037 -—-
7 .036 N37 - 2.8

The response time does not vary significantiy between the character type
data and the integer type data on the query of PKEY's,

While the sequential search query is much slower than the direct query
on PKEY, there still does not seem to be any correlation between the number
of UIC fields and the average response time. There is a maximum difference
of about 4% in the average response times using the sequential search
query.

2-20

WWSINESS AND TECHNOLOGICAL SYSTENS, INC.

A second set of tests were designed which used only a single UIC
field. This testing was conducted originally using ORACLE 2.3 and SEEDN.
In each test the type of data loaded into the UIC field was varied. The
first test used a UIC field that contained only integer values requiring
less than. 16 bits to represent them (equivalent to I*2 specification in
FORTRAN). The second test used integer values greater than 16 bits in the
VIC field (equivalent to I*4 specification in FORTRAN). The third test
employed floating point (real) values in the UIC field. The fourth thru
seventh tests used character data. In the fourth, a two byte character
string was used; in the fifth, a four byte character string was used; in
the sixth, an eight byte character string was used; and in the seventh
test, a twelve byte character string was used, Each test consisted of
Yoading 5,000 records and querying 250 of them. A PMS-like application was
employed during these tests (see Appendix I).

When the INGRES Version 1.3 DBMS became available for testing, a
similar but much less exhaustive test was performed to assess the impact of
field type on performance. In this testing, a comparison was made between
an I*2 field and an I*4 field only. A PMS-like data base was loaded with
5,000 records and no query was performed,

ORACLE Version 2.3.2 Results

The table structure used in each of the tests is summarized in the
following diagram:

HEADER Table

PRIMARY_KEY* | MID_SID* | TIME* | UIC | SDF | MESSAGE | HEADER

—

*Indexed Field

2-21

BUSINESS AND TECHNOLOGICAL SYSTENS, INC

The table below shows the average insertion rate for loading 5,000 header
rows into the table for each of the tests:

ORACLE LOAD RESULTS

UIC Data Description | Average Insertion Rate | % Improvement over
(Hdrs/Sec) Slowest Load (I*4)
Integer (1*4) 3.086 -—-
Real 3.111 + .8
Character (4 Byte) 3.133 + 1.5
Character (2 Byte) 3.141 + 1.8
Character (12 Byte) 3.158 + 2.3
Integer (I1*2) 3.166 + 2.6
Character (8 Byte) 3.207 + 3.9

The resuits in the table are summerized in order of slowest to fastest
insertion rate. No obvious trend is detectable in the results. The
difference between worst and best results (I*4 and 8 Ryte Character data
types) shows slightly less than four percent improvement. The results
suggest that one should conclude the impact of data type on load
performance is negligible.

Fach of the tests included the querying of two hundred and fifty PMS
headers employing the host language interface capability using the

following query:

SELECT * FROM HEADER WHERE PRIMARY KEY =

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The results of these queries have been averaged for each test and are
summarized below:

ORACLE QUERY RESULTS

UIC Data Description | Average Response Time

(Sec)
Character (2 Byte) .18
Character (12 Byte) .18
Integer (1*4) .19
Character (8 Byte) .19
Integer (I1*2) .20
Real .20
Character (4 Byte) .20

The test results do not indicate a significant difference or noticeable
trenc in performance due to the specification of the data type for the
range of types chosen in this test.

SEED Version C.00.02 Results

The data base design for this testing was identical to the design
shown in Section 2.1.2, except that the data type of the UIC field was
varied, The queries that were performed were the same two queries as in
the previous section, one to form the primary key and “CALC" to the proper
R4_PKEY (OBTNC) and the other to form the primary key and do a sequential
search on the proper R4 PKEY (OBTNAP). (See Appendix III)

2-23

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The average connect time for loading the various data types is shown in the
following table:

SEED LOAD RESULTS

UIC Field Type Average Insertion Rate % Improvement over

(Hdrs/Sec) Slowest Load (Real)
Real 4.74 _—-
Integer (I*2) 4.77 + .h
Character (2 Byte) 4,83 + 1.9
Character (8 Byte) 4,90 + 3.4
Character (12 Byte) 4,90 + 3.4
Integer (1*4) 4,97 + 4.9
Character (4 Byte) 5.00 + 5.5

The results show that there is no significant impact on loading rates
due to the data type of a variable. There is a maximum difference of .26
insertions per second or about a 5% difference.

The query results for both queries are shown below, and it can be seen
from the table that, as in loading, there is no significant impact on
query rates due to data type variation. In the “CALC 5% PKEYs" query,
while the average response time for the 12 Byte Character run appears to be
greater than for the other runs, a look at the CPU times shows that for all
seven runs, the average CPU time was .N4 seconds. In the sequential search
query, there is a negligible maximum difference in average query rates of
about 3%.

2-24

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED QUERY RESULTS

Average Response Time
(Sec)

UIC Field Type CALC 5% PKEYs|Seq.Search .5% PKEYs
Integer (1*2) .07 17.7
Integer (1*4) 07 17.5
Real .07 17.4
Character (2 Byte) 07 17.3
Character (4 Byte) N7 17.7
Character (8 Byte) .07 17.5
Character (12 Byte) .1 17.8

INGRES Version 1.3 Results

The table structure used in this testing is shown here:

HEADER Table

MID_SID}SSC|SDF | TIME|UIC |MESSAGE | HEADER

In this test, a PMS-like data base was loaded two times. In the first
run the UIC field was defined as Integer*2 and in the second run, the UIC
field was defined as Integer*4. In each run, 5,000 records were loaded,

A table showing the insertion rate for the two runs is given below,
The insertion rate includes the time used for loading and creating the
necessary indices (MID_SID, TIME, and the concatenated primary key made up
of MID SID, SSC, SDF, and TIME were indexed).

2-25

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

INGRES LOAD RESULTS

UIC Data Average % Degradation
Description | Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
Integer (1*2) 10.85 -——-
Integer (1*4) 10.89 - .4

There does not seem to be any correlation between load rate and field
type in this test.

2.1.4 Field Size vs. Number of Fields

Sections 2.1.1 and 2.1.2 of this report dealt with the impact on
performance of field size and number of fields, respectively. In the
testing in each of those sections, as the number of fields grew or the size
of the fields grew, the total size of the record grew. The purpose of the
testing in this sertion was to assess the impact on performance due to the
“trading off" of field size and number of fields. In other words, in each
test, the total size of the records remained the same, while the number of
fields and field sizes were varied,

The first test which was conducted employed the original PMS design as
discussed in Appendix I of this report. In the appendix, reference is made
to 384 bits (48 bytes) of information to be stcred as a single field., In
this test, those 48 bytes were broken down into multiple fields. For
example, in one case 3-16 byte fields were created, This test was
conducted using ORACLE and SEED,

The second test which was conducted employed the revised PMS design,
This is also discussed in Appendix 1. In this test, the length of and
number of UIC fields were altered. This testing was performed using ORACLE
and INGRES,

2-26

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORACLE Version 2.3.1 and QRACLE Version 3.0 Results

The first test in this section was performed using ORACLE 2.3.1 on the
original PMS design which is shcwn below. For this test, there was
interest in evaluating the impact of making the SECHDR field into several
smaller fields. The SECHDR field does not have a rigidly defined format
and was therefore treated as a single large field that could be retrieved
by a user who was aware of the true subfield structure and who could decode
the 384 bits accordingly. It was requested that tests be conducted to see
what impact would te present ii7 the data in the SECHDR was stored as
multiple fields to permit access to smaller amounts of data at a single
retrieve,

HEADER Table

KEY*{SID{MID|SSC]PLP|SDF {SHID|SIEC| TIME|PLS|SECHDR |UIC|COMMENT

* Indexed Field

The SECHDR was subdivided into three fields in one test, six fields in
a second, and twelve fields in a third. In each of these tests the total
lengths of the subdivided fields were equal (128 bits per field, 64 bits
per field, and 32 bits per field respectively). The tests consisted of
loading 5,000 PMS headers into an empty data base. None of the fields
which constituted part of the SECHDR field were indexed. Only the KEY
field was indexed for these tests, The results of the first test are
plotted on the graph below.

The second and third of these tests (with 6 and 12 fields for SECHDR,
respectively) are summarized in the graphs on the next page. The initial
load performance in each of these tests continues to drop as more fields
are added even though the total volume of data remains the same., The
initial 720 headers were loaded in an average of 4.75 headers per second in
the first test, at 3.8 in the second, and at 3.6 in the third. The
degradation is less pronounced through the entire 5,000 record load but
nevertheless as more fields are present there exists a reduction in the

2-217

OF POOR QUALITY

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

1 Load Summary
ORACLE PMS 5k Record Data Base

LB ERLLLE T

KEY Indexed
(SECHDR Divided Into 3 Fields)

Number of
Header
Records
Loaded
Per
Second

o 1 2 ' 5 6 7 . 10
. U0 TOU0L VU ISUREJUUN TN R OO D0 P R Y SO SAY JOU - OSSO S SURSAU B S S ' ; . ; !
: . ; ’ 'Numbet of PHS Headst Becords [naﬂ'ﬂJ (tﬁéusnn&s) [DA A A o

R

average load rate per second. This could be anticipated since ORACLE

treats each field present independently by adding a header to each
describing the field number and length,

The results of the three runs are summarized in the table below,
making the percent of degradation more apparent,

ORACLE LOAD RESULTS

Field Description Average % Degradation
Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
3-16 Byte Fields 4,01 -—-
6-8 Byte Fields 3.54 + 11,7
12-4 Byte Fields 3.14 + 21,7

2-28

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The second test which was run to assess the field size versus number
of fields was run under ORACLE 3.0. In this testing, the revised PMS
design was applied, with the header table defined as:

HEADER Table

PRIMARY_KEY*IMID SID|TIMEJUIC]SDF |MESSAGE | HEADER

* Indexed Field

The UIC field was selected for testing. In all runs, the UIC field
was a non-indexed field. First, UIC was defined as 1 field, 64 bytes in
length, Next, UIC was defined as 4 fields, each 16 bytes in length.
Following this, UIC was defined as 8 fields of 8 bytes each, and finally
UIC was defined as 16 fields of 4 bytes each,

First, each of the four data bases was loaded with 5,000 header
records. Following the load, the query listed below was performed on 5% or
250 records in the data base,

SELECT * FROM HeADER WHERE PRIMARY_KEY =

The results of the four data base loads are summarized in the table

below.
ORACLE LOAD RESULTS
uIC Average % Total |Total|Total |Total
Description Insertion|Degradation |Connect| CPU |Direct|Page
Rate in Average | Time |[Time | I/0's|Faults
(Hdrs/Sec)| Insertion | (Sec) |(Sec)
Rate
1-64 Byte
Character String 10,68 --- 468. | 360.]3,076.| 9,222,
4.16 Byte
Character Strings 9.121 + 14.6 548, | 433.}3,071.; 8,982.
8-8 Byte
Character Strings 7.63] + 28.6 655, | 530.13,073,110,577.
16-4 Byte
Character StrinqsI 5.271 + 50.7 948, | 792.14,062,|16,011,

iS

[
o
-

BUSINESS YD TECHNOLOGICAL SYSTEMS, INC.

& v :
z o~ £ o=
i & T o :
= = e < :
— - B
c S :
- - . - had o
T = : g = i
-— TR > b
o : ST -
< - ;
R AR : T ¥ o
mnxt : Ecic B
T g & H 20 e
3¢ . A=
heE g o - T
ox"™ e [e
£n .. T e .0..7"—M0 .
T 3g B Coo e s T
E = g 2z I
s = T =
&) 2 R
2 8 s & ~3
c < < E ~TE
z €

it

'.

A

e

m
-
X
=
&
T
—S
- O
imz
£

c
&
Lo

=
-
©

-

T

& 3 - Y —
= =

% e
E— —E—
R .
c: T
S —
@ fe

2 Pt
€ ‘E

s

i
i
i
1
i
i

y

Records

ade

Per :
Second

Loaded :

Header

He.

Numper of
Number of:

ORIGINAL PAG
OF POOR QuALITY

BusiNess AND TECHNOLOGICAL SYSTEMS, INC

The number of fields present in the record appeareu to have severely
impacted performance in loading the data base. Whereas the total length of
a header packet did not vary among runs, the amount of information to be
managed by ORACLE did.

The query rates for the same 4 data bases are shown here.

ORACLE QUERY RESULTS

VIC Description Average % Total | Total|Total | Total
Response |Degradation{Connect| CPU |Direct| P:je
Time in Average { Time Time } 1/0's| Faults
(Sec) Response | (Sec) | (Sec)
Time

1-64 Byte Character

String .N93 -—- 23.34 { 15,00} 467 | 3,022,
4-16 Byte Character

Strings .N95 + 2.2 23.64 | 15.77| 456 | 3,609.
8-8 Byte Character

Strings .N95 + 2.2 23.83 | 15.921 454 | 3,515,
16-4 Byte Character

Strings .098 + 5.4 24,61 | 16.13| 532 | 3,199.

Whereas a slight degradation appeared in querying as a result of an
increased number of fields in a record, the degree of degradation was much
smaller than in loading and should not cause great concern.

SEED Version B.11,.9 Results

This test was rur using the original PMS design as raferenced in
Appendix I.

In the prototype design, shown below, the R6 PKEY record contained the
primary header, a time field, a packet length field, and a character field
of length 48 (bytes) to hold the remaining cecondary header fields., e
variation on the design was to alter this 48 byte character field into 3 -
16 byte fields and then again into 6 - 8 byte fields and observe t o
results to see if the number of fields or field lengths of non-ii... .

2-31

BUSINESS AND TECHVOLOGICAL SYSTENMS, INC.

fields impacted load performance. In this test, 10,000 records were loaded
each time. As the number of fields grew, the load rates declined slightly,
with 7.1 » 4.5 records per secord for one field, 6.7 » 3.7 records per
second with 3 fields, and 6.1 »+ 3.5 records ger second for 6 fields.

The results are shown on the following page.

SEED Schema
R1_MID R2_TIME R3_SDF
B S ; *ij\\
s14 | S2.6 .53 5
S1_6 : $3 6 , ‘
Rq_slo! | = R5_UIC
. ! B —
— NS o
~—— e
~— a|R6_PKEY[.
S4_6 , S5 6
: S5 7

R7_COMMENT|

=

The tabie below summarizes the results intc a more readable form.

SEED LOAD RESULTS

Field Description Average % Degradation
Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
3-16 Byte Fields 5.69 -—

2-32

ORIGINAL [
OF POOR QUAL iy
BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Load Summary

SEED PMS 10k Record Data Base

Secondary Header - 3 16 byte flelds]

s

RS

Number of

Header _
Records
Loaded

Per
Se.~ad

SR S S
1

1 2’ LR R ‘S i
S TOR S NS N N DN U 0 WU DU WOE 0 N O R
H Nmbe' ot PPS H-ader Records Loaded (thousands

N T T 0 1 R 1 O O A Y O

R ! '

! . N

A

H 4 IS Load Summatv

H H

[A SEED PMS 10k Record Data Base

Secondary Header - 6 R byte fields

Number of . !
Header JURSINE SR SOURE SUOUE JURID NS SO0
Records ;
Loaded 4
Per
Second

I 2
i.....l
b0 :

] ' o2 > R S A
B e il

Number of PiS Header Rerords Loaded h ousan

JLICH I 6 0 O R O
2-33

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

INGRES Version 1.3 Results

The test design used here was to load 5,000 records into a PMS-like
data base with one table, which is diagrammed below.

HEADER Table

MID_SID*|SSC*|SDF*|TIME*[UIC MESSAGE | HEADER

* Denotes Concatenated Primary Key (Indexed)

The first four fields formed the unique primary key which was indexed
after the data was loaded. The UIC field wasAdefined as a 64-byte
character string. The data base was then queried 250 times (5% of the
records in the data base) on the value of the primary key.

This test procedure was then repeated three times. First, there were
4-16 byte UIC fields, then 8-8 bvte fields, and finally 16-4 byte fields.
With each data base design the same records were loaded and the same query
was performed,

The load results from the four test cases are summarized below as
given in the VAX account file. Insertion rates include time necessary to
create an index on the primary key as well as loading times.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES LOAD RESULTS

Average Total jotal
Insertion |% Degradation jConnect! CPU Totai
UIC Rate in Average Time Time Direct
Description {Hdrs/Sec)|Insertion Rate| (Sec) (Sec) | 1/0's
1-64 Byte
Character String 9.60 -—- 521. 271. 13,425
4-16 Byte
Character Strings 9.40 + 2.1 532. 278. 13,432
8-8 Byte
Character Strings 9.14 + 4.8 547. 293. 13,441
16-4 Byte
Character Strings 8.98 + 6.5 557. 308, 13,463

There appears to be a fairly steady degradation in

number of fields increases.

load rates as the

The results of querying the(same four data bases on the primary key

value are shown in the following table as reported in the VAX account

file. 1In each case, the query was performed 250 times.

are average retrieval times.

INGRES QUERY RESULTS

The times shown

UIC Description

Average

Response Time

% Degradation
in Average

Total

Connect Time

{Sec) Response Time (Sec)
1-64 Byte Character String .43 -— 108.
4-16 Byte Character Strings .46 + 7.0 116,
8-8 Byte Character Strings 56 + 30.2 141,
16-4 Byte Character Strings .67 + 55.8 168,

2-35

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

As in the load, the size of a field appears to have an impact on query
performance. The impact appears to be much greater, though, in querying
than loading.

2.2 Record Structures

DBMS models are designed to provide for the management of multiple
data structures. This distinction is one which separates DBMSs from file
management systems. If the system can only manage one data structure at a
time, it is not a true DBMS for it cannot manage data which is logically
related but is organized differently. DNBMSs provide this capability in
various mannsrs, including the use of different "branch" descriptions in
hierarchical systems, different "member" and “owner" descriptions in net-
work systems, and different "table" descriptions in relational systems. In
implementing the capability to manage different structures, the DBMS
designers have had to design software which recognizes the appropriate
structure to use and which interprets how to process that particular struc-
ture's data. As a simple means to evaluate whether a more complex data
base schema results in decreased performance, a set of tests were defined
which altered the conventional PMS-like design used in many of the orevious
tests into two distinct, identical structures. A PMS header could
be inserted into either structure by the load software. The DBMS had to
manage a schema description which might be thought of as being twice as
complicated as the previous one, which serves as a control for comparison.

The tests were implemented so that 5,000 PMS header records were

lcaded with approximately half in each structure. Approximately one
2Zundred twerty five headers were queried and retrieved from each of the

2-36

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

structures for a total of two hundred fifty queries as was done in earlier
tests. A comparison of load and query results obtained with the dual
structure to those obtained with a single structure should provide a
preliminary basis for estimating if the approaches used for managing

complex structures require more processing overhead than do less complex
schemas.

ORACLE Version 2.3.2 Resylts

The data base schema employed for this test was based on one used
frequently in previous sections. The table description of that schema is
summarized by the following diagram:

HEADER Table

PRIMARY KEY* } MID SID* | TIME* | UIC | SDF | MESSAGE | HEADER

*Indexed Field
The schema for tha dual structure test has this HEADER table and an
identically specified table called HEADER1. The queries used in the test
to access the header data were:

SELECT * FROM HEADER WHERE PRIMARY KEY =

and

SELECT * FROM HEADER1 WHERE PRIMARY KEY =

2-37

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The result of the loading is summarized below along with that of the
previous single structure control result:

ORACLE LOAD RESULTS

Type of Structure Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Insertion Rate
Single Structure 3.166 -—-
(Control)
Dual Structure 2.957 +6.6

The results show a degradation in load oerformance when the second table is
introduced. Closer examination of other statistics reveals something of
the cause of the observed difference in insertion rate. Below are included
the host and detached process statistics for the control run and dual
structure run, The host statistics were obtained from the reporter file
and the detached process statistics from the VAX accounting log.

ORACLE LOAD RESULTS

Control Run}Dual Structure
Host Process CPU Time (Sec) 121.81 145.11
Direct I/0's 18 9
Page Faults 1,848 17,522
Detached Process CPU Time (Sec) 649.37 677.74
Direct 1/0's 15,921 19,837
Page Faults 1,246 28,986

The dual structure appears to have significant increases in almost all of
the three computer resources, but the page fault increase in both the host
and detached processes is far out of proportion. The dramatic increase is
attributed to the additional work space and code required to support the
multiple "cursor" areas which are required to access both tables. The
additional CPU time required in the detached process may be attributable to
the page faulting increase and have no direct connection to the data base's
complexity.

2-38

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The results of the querying of 250 values from the control run and of
125 values from each of the tables in the dual structures appear below:

ORACLE QUERY RESULTS

Type of Average Response Time % Degradation in
Structure (Sec) Average Response Time
Control .20 -

Dua] 019 - 4.8

These results do not indicate a significant impact in response due to the

increased schema complexity. There continues to be a significantly higher
number of page faults as evidenced by the following table, where the host

process statistics were generated by the reporter and the detached process
statistics from the VAX account file.

ORACLE QUERY RESULTS

Control Run | Dual Structure
Host Process CPU Time (Sec) 7.43 7.91
Direct 1/0's 242 234
Page Faults 112 1,050
Detached “rocess CPU Time (Sec) 25.85 27.71
Direct 1/0's 492 491
Page Faults 889 2,218

The observed increase in CPU time may again be attribuiable to the page
faults and not to the complexity of the schema. The disproportionate
number of page faults is thought to be related to the fact that two cursors
are used to perform the queries instead of the one that was used in the
control run,

2-39

BUSINESS AND TECHNOLOICAL SYSTEMS, INC

SEED Version C,.00.03 Results

The data base design used in this testing is shown in the diagram
below. As can be seen from the diagram, the two halves of the schema are
identical except for record names. Field names, area names, and set names
are also unique, although not shown in this diagram,

SEED Schema
R1_MIDSID R2_TIME R3_SDF R6_MIDSID R7_TIME R8_SDF
‘L__Af/////7 ‘\\\\\\\1L~ * l//////,
R4_PKEY R9_PKEY
1 y
R5_MESSAGE R10_MESSAGE

In loading, approximately half of the headers were inserted in each half of
the data base structure. The query used in the testing was to form the
primary key and "CALC" to the proper record in the proper half of the
schema (0OBTNC) for 5% of the records in the data base. (See Appendix III)

The loading results are shown in the table below.,

SEED LOAD RESULTS

Type of Structhre Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Insertion Rate
Single Structure 4,77 -——-
(Control)
Dual Structure 3.87 + 18,9

This table shows that there is a fairly large degradation (about 20%)
in loading rates when a significantly more complex schema is introduced.

2-40

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The results of querying the “"double design" data base are shown in the
following table, aiong with the results from the control run:

SEED QUERY RESULTS

Type of Structure Average Response Time % Degradation in
(Sec) Average Response Time
Single Structure 07 —
(Control)
Dual Structure .09 + 28.6

The results show an impact on response time with increased complexity
of the schema, probably due to an increase in the number of direct 1/0's
and page faults. A table showing these values follows:

SEED QUERY RESULTS

Total Total
Type of Structure | Direct I/0's Page Faults
Single Structure 374 352
(Control)
Dual Structure 435 664

2.3 Direct Access Alternatives

To retrieve particular records in an efficient manner, DBMSs normally
offer a direct access capability. This feature enables a user to specify a
value or values for a field or fields which the DBMS can use to locate a
record or records which meet the conditions without sequentially searching
all the records of that particular type. Alternative approaches used by
DBMSs to afford the direct access include hash codes and inverted files.
Hash codes process the field or key value and return a physical or logical
pointer which identifies the location of the record. Inverted files or
B-trees contain the key values and pointers to where the associated records

2-41

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

reside. The key values are arranged in order in a hierarchical fashion
which facilitates rapid access to any key and its pointer.

Use of a hash code implies direct access in a single or at most two
level operation unless different key values generate the same location
pointer, giving rise to overflow conditions. This normally results in a
chaining of records with duplicate hash values, thus reducing the access
efficiency and increasing the insertion overhead. The B-tree approach
requires additional space for the inverted file in the data base and as the
B-tree grows, slightly more processing is required to navigate additional
tree levels. DNuplicate key values are usually chained together.

The use of direct access is not without cost, as mentioned above.
Insertion, update, and deletion costs can increase when keyed fields are
involved and data base space may be consumed. In some cases, the use of
keys can have indirect costs. This may occur when, for example, direct
access is desired on more than one field in an input data record. Whereas
it might be logically desirable to store all of the information from this
input data record together (i.e. one table in a relational model or one
record type in a network model), the constraints of a particular DBMS may
govern that the intormation be separated because only one field in a table
or record type may be accessed directly., Of the DBMSs employed in the
testing in this report, SEED Version B.11 is the only one with such a
constraint, The following tests measure the efficiency of the direct
access approach used as well as the cost of insertion, deletion, and
update. They also attempt to measure the overhead associated with key
length and duplication of key values.

2.3.1 Direct Access Overhead

To assess the overhead of the direct access techniques used by DBMSs,
a set of tests were designed which measure the incremental cost associated
with the incertion, update, and deletion of records., The tests were per-
formed on the PMS-1ike application. A control test was conducted using a

2-42

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

data base schema in which no direct access existed for the UIC field. This
data base was loaded with 5,000 PMS headers which had unique 16 bit or
smaller integer values in the UIC field. Subsequently_ one hundred of the
records were updated with different UIC values. Next, the same one hundred
records which had been modified were deleted. This scenario was then
repeated using the direct access technique(s) available in each DBMS
package being tested. If multiple techniques for direct access existed in
a package, each would undergo a separate set of tests. The results of the
"control" tests can be compared with those of the direct access tests to
measure the impact of using such features,

ORACLE Version 2.3.2 Results

The table structure used for the control test is summarized in the
following figLre:
HEADER Table

PRIMARY KEY* | MID _SID* | TIME* | UIC | SDF | MESSAGE | HEADER

*Indexed Field

The direct access instrument used in ORACLE is a B-tree.. The control test
did not require an index (B-tree) on the UIC values. The schema was
changed in the second test and did require that the UIC field values be
referenced in a B-tree. The results of the two loads are summarized in the
following table:

ORACLE LOAD RESULTS

Data Base Design | Average Insertion Rate % Degradation in

° (Hdrs/Sec) Average Insertion Rate
UIC Not Indexed 3.16 .-
UIC Indexed 2.45 + 22.5

2-43

Busin:ss AND TECHNOLOGICAL SYSTEMS, INC

The addition of the index on the UIC field is substantial, requiring 22.5%
more time to load the same number of records (5,000). The cause of the
degradation appears to be related to a significant increase in the number
of direct 1/0 operations occurring during the load. In the control load
there were about 16,000 direct I/0 operations while in the load with the
UIC field indexed there were about 28,000, an increase of 75 percent. CPU
time also increased by about 18 percent. These figures are shown in the

following table and represent the statistics given in the VAX accounting
log.

ORACLE LOAD RESULTS

Total Total CPU Time
Data Base Design|{ Direct 1/0's (Sec)
UIC Not Indexed 16,214 786.21
UIC Indexed 28,153 924.16

One hundred PMS headers were then selected to have their UIC field
updated. The SQL statement used to perform the update was:

UPDATE HEADER SET UIC = -(UIC) WHERE PRIMARY_KEY =

The results of the update operations are summarized in the table below.
The average update time was derived from the reporter file. The total CPU
time and total direct I/0's were obtained from the VAX account log, where
the corresponding total connect times reported there were 41, and 50.
seconds, respectively.

ORACLE UPDATE RESULTS

Total |{Total
Data Base Average Update Time| % Degradation in CPU Time|Direct
Design (Sec) Average Update Time| (Sec) | 1/0's
UIC Not Indexed .17 -—— 22.76 | 498
UIC Indexed .26 + 52.9 26.49 | 640

2-44

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The overhead of the index is again obvious, requiring more than 50%
additional time co update the UIC field with the index. CPU time increased
by 16% and direct I/0's by almost a third as well.

The same one hundred PMS headers updated above were deleted next. The
SQL statement used via the host language interface was:

DELETE HEADER WHERE PRIMARY KEY =

The results of the delete tests are summarized in the following table,
where the average delete time was taken from the reporter file a=d the
total CPU time and total direct 1/0's fr~ the VAX accounting file. In the
VAX accounting file, the total connect times were 55. and 56. seconds for
the two runs, respectively.

ORACLE DELETE RESULTS

Average Delete Time Total CPYU Total
Data Base Design (Sec) Time (Sec) Direct 1/0's
UIC Not Indexed .26 27 .96 689
UIC Indexed +26 29,92 689

The results indicate 1ittle impact on performance attributable to the
presence of the UIC B-tree. The CPU time shows approximately 7% more time
required for the data base with UIC indexed but the number of direct I/0
cperations is identical in the two tests.

ORACLE Versinn 3.0 Results

In the tests run to determine the impact of applying direct access
techniques to a field in a record using ORACLE 3.0, two table structures
were defined. The two were identical except for the definition of one
field, The table used in the control run, where no index was placed on the
UIC field, is shown here,

2-45

BUSIVESS AND TECHNOLOGICAL SYSTENS, INC.

HEADER Table

PRIMARY_KEY*|MID SID*|1IME*|UIC|SDF |MESSAGE |HEADER

® Indexed Field

In the other run, an index was placed on UIC in additior to the
indices defined above. The old space definition as defined in Section
3.2.1.1.2 of this reoort, was used in this testing.

First, the data base was loaded with 5,000 PMS-1ike header records,
eacn with a unique UIC value. The results for the two test cases are given
below.

ORACLE LOAD RESULTS

Data Base Design|Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Insertion Rate

VIC Not Indexed 5.04 -—

UIC Indexed 3.52 + 36,2

A closer examination of the results of the two loads reveals that both
the CPU time and number of direct I/0 operations increased dramatically
when the index was added on UIC. Those results are shown here.

ORACLE LOAD RESULTS

Data Base Design | Total Direct I/0's|Total CPU Time
(Sec)

UIC Not Indexed 10,847 661,17

UIC Indexed 7 756 849,66

2-46

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

Ne:t, one hundred headers were modified by setting the UIC field to
its additive inverse. Following this, the same one hundred headers were
deleted from the data base. The SQL statements which performed these two
functions are given by:

UPDATE HEADER SET UIC = - (UIC) WHERE PRIMARY KEY =
and
DELETE FROM HEADER WHERE PRIMARY_ KEY =
The results of the update operation show that the addition of an index
to a field introduces additional overhead in updating as well as loading.
The index must also be updated each time the value in the field is updated.

This can be seen in the table below.

ORACLE UPDATE RESULTS

Average Total [Total
Data Base Update Time| % Degradation in |CPU Time|Direct
Design (Sec) Average Update Time | (Sec) |(I/0's
UIC Not Indexed .10 - 6.95 205
UIC Indexed .19 + 90.0 11,76 333

In this case, the addition of the index to the UIC field nearly
doubled the time it took to update 100 records.

While the impact of an index on deletion was not as great as on

modification, some degradation was apparent, as can be seen from the table
below.

2-47

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

ORACLE DELETE RESULTS

Average Total [{Total
Data Base Delete Time] % Degradation in JCPU Time|{Direct
Design (Sec) Average Delete Time | (Sec) |1/0's
UIC Not Indexed .23 -— 14.10 4
UIC Indexed 26 + 13.0 16.30 358

Whereas in a modification of a value which is indexed, the ordering
within the index is altered, this is not the case when a value is deleted.
The ordering within the index does not vary - only the delete takes place.

This could account for the small increasc in CPU when UIC was indexed.

SEED Version C.00.03 Results

In SEED, direct access to a particular field may be gained in one of

two ways. Fither a separate record can bhe created for the field, where the

field is “CALC"ed (hashed), or an index (R-tree) can be created for a

non "CALC"ed field in an existing record.

The three data base designs for

the control test, direct access through record test, and direct access

through index test are shown below.

SEED Schema
Control : R1_MIDSID R2_TIMF R3_SDF
\\\
™~
_.‘L_l
RQ_PK[Y Note: UIC exists as a
o’ non-calc field in

record IM_I‘K} Y

RS MESSAG

2-48

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

SEED Schema

Direct Access [R1_MIDSID R2_TIME R3_SDF R6_UIC

Through Record: ‘\\\‘ ‘/////

R4_PKEY

J

RS_MESSAGE

SEED Schema

Direct Access R1_MIDSID R2_TIME R3_SDF I1 VIC

Through Index: \\\\\

R&_PKEY

Note: N\ /denotes index

<
RS_MESSAGE

The methods used to alter and delete records in the three tect cases
were as foliows. In the control run, the primary key was formed,
corrert R4 PKEY record was accessed through the OBTNC command, and c.
record was either updated or deleted. In the direct access through record
test, the correct R6_UIC was accessed through OBTNC, altered or deleted,
and its member in R4_PKEY was altered or deieted. In the direct access
through index test, the correct R4 PKEY record was located through OBTNI,
and then altered or deleted. (See Appendix III)

The loading results of the three runs are shown below.

2-49

BUSINEsS anND TECHNOLOGIKCAL SYSTENS, INC.

SEED LOAD RESULTS

Data Base Design{Average lInsertion Rate{ % Degradation] Total
(Hdrs/Sec) in Average Direct
Insertion Rate| 1/0's

Control Run 5.00 -—— 18,286

Direct Access 2.96 + 40.8 29,151
Through Record

Direct Access 4,484 + 11.2 18,852
Through Index

While the time required to load 5,000 records is increased by
application of either method of direct access for a field, the percent of
degradation is much greater when using a record as opposed to an index, as
shown in the third column of the table above. When the R6 UIC rocord is
present in the schema, there is additional overhead for actually loading
the R6_UIC record and for forming the proper set linkage connecting it to
the R4_PKEY record each time a new input data record is inserted into the
data base. Also, because of the additional set linkage, the length of the
R4_PKEY record is increased by 4 bytes. The number of SEED pages that are
95-100% full increases from 31 in the control run to 45 in the direct
access through record run. The statistics bear out the fact that more
direct 1/0's are occurring in the second test, increasing from around
18,360 to 29,200, or about 60%. In the direct access through index run,
the same number of pages (31) are 95-100% full as in the control run,

Also, the number of direct 1/0's is only slightly higher, at around

18,900. When using an index, the overhead of placing the value in a B-tree
in a separate area of the data base exists, which may account for the small
increase in direct 1/0's.

The results of altering and deleting 2% of the records in the data
base is shown below for each of the three designs.

2-50

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED UPDATE AND DELETE RESULTS

Data Base Design| Average |[% Degradation| Average |% Degradation
Update Time| in Average [Delete Time} in Average
(Sec) Update Time (Sec) Delete Time

Control Run .08 -— .23 -——

Direct Access .26 + 225.0 .30 + 30.4
Through Record

Direct Access .13 + 62.5 .28 + 21.7
Through Index

In the control run, the UIC field can be updated very quickly because

the correct R6_PKEY record is obtained by “CALC"ing on PKEY.

After the

proper record has been made “current®, the UIC field can be updated

easily.

When a record is created for the field, 2 records must be

updated--the R6_UIC which is accessed directly, and the proper R4 PKEY

member record.

When an index is created for the field, access is slower

than a direct hash to the record using the primary key value because of
navigating the B-tree, but because of the crdering within the B-tree,

access is still faster than through an owner-member access.

The deletion statistics show the same kind of behavior as the

modifications.

one record is needed to be accessed per delete.

The control run could delete records faster, because only
Records obtained through

indexing could be deleted faster than those obtained through an owner-

member relationship (direct access through record), although the difference

between the two methods was not as significant as in updating.

In the control runs for the update and delete tests the location of

the record in question was determined by "CALC"ing to it using the unique
It should be noted that this
facility is the reason the control runs can locate the UIC so effectively.
If a sequential search of the R4_PKEY records was required to find a

primary key value in the R4_PKEY record.

particular UIC value the control run would have had much different results.

2-51

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES Version 1.3 Results

The table structure used for this testing is shown in the diagram
below.
HEADER Table

MID_SID|SSC|SDF | TIME |UIC | MESSAGE | HEADER

The two different methods of loading available to INGRES users, copy
and repeat append, are described in Section 3.2.1.3.4 of this report. The
three data storage structures employed in testing throughout this report -
heap, hash, and ISAM are described in Section 3.2.1.3.2 of the report.

In this test, 5,000 records were loaded into the data base using the
copy command and were stored in heap structure. Following the load,
indices were created for the concatenated primary key (made up of the
MID_SID, SDF, SSC, and TIME fields of the input record), and for the
MID_SID field and the TIME field. In the first run, the UIC field was
defined as I*2 but no index was created for it. Following the load, 2% of
the records in the data base, or 100 records, were updated, and then tiie
same 100 records were deleted. In the second run, the UIC field was
defined as 1*2, and an "ISAM" index was created for the field. As in the
first run, 100 records were then updated and deleted.

Because of the manner in which indices are created, the difference in
load time between the two runs described above is just the time necessary

to create an index on UIC,

The chart below shows the times necessary to load the data and create
the various indices.

2-52

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES LOAD RESULTS

Create 3
Create }Indices |[Create Average Degradation
Data Base Index |on MIDSID| Index Insertion |in Average
Design Load |on PKEY|and TIME j{on UIC{Total|[Rate Insertion

(Sec)| (Sec) | (Sec) (Sec) |(Sec)|{Hdrs/Sec) Rate

UIC 176. 160, 125. 461, 10.85 T
Not Indexed
UIC Indexed | 167. 156. 122, 56. 501. 9,98 + 8.0

There appears to be an 8% degradation when an index is created on
UIC. However, the degradation could be considered much more. If the UIC
had been indexed on the first run instead of the second, the totals would
have been 517 seconds and 445 seconds, respectively. In this case the
degradation would have been about 14%. This is because there was a 3-1/2%
difference between the times necessary to complete the same three tasks in
each run,

The results of updating and deleting the data base are shown below for
both cases. The INGRES statements which performed the updates and deletes
were:

RANGE OF H IS HEADER
REPLACE H(UIC=-H,UIC) WHERE

H.MID_SID = AND
H.SSCT = AND
H.SDF = AND
H.TIME =

DELETE H WHERE
H.MID_SID = AND
H.SSCT = AND
H.SOF = AND
H.TIME =

2-53

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

INGRES UPDATE AND DELETE RESULTS

Arerage |7 Degradation| Average (% Degradation
Data Base Design{Update Time| in Average |Delete Time| in iverage
(Sec) Update Time (Sec) Delete Time

UIC Not Indexed .79 -——- 1.04 _—
UIC Indexed 1.04 + 31.6 1.25 + 20.2

The degradation is significant in both the update and the delete runs,
being about 32% and 20%, respectively.

2.3.2 Key Length

The ability to afford direct access to a record based on a particular
index value requires that the DBMS software be capable of managing
different key value lengths. Character string data is the most likely
candidate to be variable in Tength and has been the target of these tests.
Some DBMS implementations have failed to manage more than the first portion
of the key value as the index and treat values that are not the same but
whose initial portion is identical as duplicates. Other implementations
have provided key compression techniques which effectively reduce the
required stoiage needs for managing long key values. The tests designed to
investigate this aspect of performance used the PMS-1ike application used
previously (see Appendix 1). The UIC field was defined as a character type
field. In the initial test, four byte character string values were used,
in the second test eight byte values were used, and in the third test
twelve byte values were applied. In each case, 5,000 PMS headers were
inserted into the data basz and 250 headers were accessed using appropriate
UIC values as the guiding selection criterion.

ORACLE Version 2.3.2 Results

Since ORACLE permits variable length fields, the table structure used
for all the tests was the same. The values loaded into the UIC field
determine the character length, thus eliminating the need to define
different schemas for each test. The design used specified the UIC field

2-54

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

as an “imaged" (indexed) field that was character type data with a maximum
length of 12 characters. The table structure for the tests follows:

HEADER Table

PRIMARY_KEY* | MID_SID* { TIME* | UIC* | SDF | MESSAGE | HEADER

*Indexed Field

The results of loading 5,000 PMS headers into the three data bases is
summarized below:

ORACLE LOAD RESULTS

UIC Description |Average Insertion Rate % Degradation in
(Hdrs/Sec) Average Insertion Rate

4 Byte Character 2.45 ——-

String
8 Byte Character 2.42 + 1.2

String
12 Byte Character 2.45 -—-

String

The results of the tests show that no significant difference in performance
exists due to the variable character lengths used in these tests.

A single query statement was constructed to exercise each of the data
bases once loaded. The format of the SQL statement used is:

SELECT * FROM HEADER WHERE UIC =

2-55

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The query was executed using 250 different UIC values for each data base.
The results of the tests are summarized in the following table:

ORACLE QUERY RESULTS

UIC Description Average Response Time % Degradation in
(Sec) Average Response Time
4 Byte Character .19 -—
String
8 Byte Character .19 -
String
12 Byte Character .20 + 5.3
String

While the 5.3% degradation in the average response time for the 12 byte
character string is small and therefore not conclusive evidence of the
impact of key length on performance, the trend is prasent and should be
noted.

Seed Version C.00,03 Results

As in the previous section, direct access to a field in a SEED data
base may be gained through the use of either a record or an index. For
each of the three cases, i.e. Character*4, Character*8, and Character*12,
both methods were tested. The data base designs are identical to the
designs in the previous section, with the exception that the UIC field was
defined as one of the above character lengths.

In the tests which employed the use of records to gain direct access
to a UIC field, the query that was performed was to "CALC" (OBTNC) the
proper R6_UIC, and then find (OBTNPO) the correct R4 PKEY member on 5% of
the records in the data base. In the cases using an index on the UIC field
in R4_PKEY, the method used was to do a "find on index" (OBTN1) tc access
the proper R4_PKEY record on 5% of the records in the data base. (See

Appendix II1)
2-56

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The loading results of all tests are shown below, grouped by method of
direct access.

SEED LOAD RESULTS

Average |% Degradation| Total |Total |% of Total
Insertion | in Average Connect |CPU Connect
uIC Rate Insertion Time Time Devoted
Method Description (Hdrs/Sec) Rate (Sec) [(Sec) To CPU
Record|{4 Byte
Character String 2.71 - 1,842.891942.48 51
8 Byte
Character String 3.06 - 12.9 1,633.14|937.44 57
12 Byte
Character String 2.63 + 3.0 1,899.80(952,04 50
Index |4 Byte
Character String 4,41 ——- 1,134.36(647.93 57
8 Byte
Character String 4,13 + 6.3 1,210.40(679.40 56
12 Byte
Character String 4,09 + 7.3 1,223.,03{686.53 56

In the "Record" group, the 8 Byte Character String run stands out as
having much better performance than either the 4 Byte Character String or 12
Byte Character String run., However, by examing the total CPU times, there is
only about 1.5% maximum difference (15 seconds) over the approximately 900
total seconds, a difference which is not significant. However, in the 8 Byte
Character String run, a greater percentage of the total connect time was
devoted to the CPU than in the ot.er runs, thereby reducing the total time.
If, in the 8 Byte Character String run, 50% of the total connect time had
been devoted to CPU, as in the other runs, the total connect time would have
been about 1,875 seconds, which would have placed it between the 4 Byte
Craracter String and 12 Byte Character String runs, as might be expected.

2-57

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

In the "Index" group, where the percentage of total time devoted to CPU
is approximately equal for all three runs, the total connect times show that
load rates are impacted by the length of the variable which is to be

directly accessed.

In both the "Record" group and "Index" group, the degradations are not

dramatic, but the trend does appear and should be noted.

The results of querying on the same data bases are shown below. The
results in this table are also grouped by method of direct access.
SEED QUERY RESULTS
Average % Degradation | Total |[Total
Method UIC Description Response in Average Connect{ CPU
Time Response Time | Time Time
(Sec) (Sec) |(Sec)
Record]4 Byte Character String .12 - 26.46 {13.43
8 Byte Character String .11 - 8.3 26.71 |13.70
12 Byte Character String .12 - 29,93 {13.66
Index |4 Byte Character String .11 -—- 27.33 }13.99
8 Byte Character String A1 --- 28.48 114,57
12 Byte Character String .11 --- 28,10 [14.30

The total CPU times of all runs are very similar. The length of the

direct access field does not appear to significantly impact retrieval
rates, regardless of whether the method of direct access is of the "Record"

or "Index" type.

2-58

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

2.3.3 Key Duplication

In the preceding section, concern was stated about the effectiveness
of some DBMSs in managing larger size field values as indexes. A similar
concern exists regarding the effectiveress of the DBMS package in managing
duplicate «ey values. Some direct access implementations have been found
to demonstrate s.gnificant sensitivities to key duplicaticn. A set of
tests were defined which 2xamine DN8BMS performance in the presence of
varying amounts of key duplication. In the first group of tests, four data
bases were required that were identical. Into each was loaded the same
data with the exception that the data values of one indexed fieid were
unique in the fir st case, were all duplicated once in the second, were all
duplicated five times in the th.rd, an were duplicated ten times in the
fourth test.

After 1oading each data base, a number of records were update& and
later deleted to further test the impact of duplication. The PMS-1ike
application was again selectc’ as the test bed (see Appendix I) and the UIC
field was chosen to contain the duplicated values (which were integer
numbers smaller than 16 bits in length). A to*al of 5,000 PMS headers
were loaded into each data base and 100 records were updated and deleted
from each.

In the second group of tests, a character string of length 10 (bytes)
was chosen for ihe kes value, and two data bases were loaded. In the
first, the first six t,tes of the key value were the constant string
'UICUIC' and the last 4 bytes were a unique character string. In the
second data base, the first four bytes were a unique character string and
the last six byies were the constant string 'UICUIC-. The purpose of this
group of tests was to assess the impact of partial duplication within a
charan er string, as opposed toc a numeric value, on performance. As in tne
first set of tests, 5,000 PMS heaaers were loaded into each data base and
100 records were updated and cdeleted from each. This second group of tests
were conducted using ORACLE 2.3 and SEED C.7.

2-59

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

ORACLE Version 2.3.2 kasults

The only variable anong the tests was the amount of duplication
present in the UIC field. This means that a single data base design was
used for all tests. The table structure used is picterially presented as:

HEADER Table

PRIMARY KEY* | MID SID* | TIME* | UIC* | SDF | MESSAGE | HEADER

*Indexed Field

The load results of the first group of four tests are summarized in the
following table:

ORACLE LOAD RESULTS

UIC Duplication Factor Average % Degradation
Insertion Rate| in Average
(Hdrs/Sec) Insertion Rate

A11 Values Unique 2.45 .—-
A1l Values Repeated Two Times 2.40 + 2.0
All Values Repeated Five Times 2.44 + .4
A1l Values Repeated Ten Times 2.40 + 2.0

The results show no evidence to conciude that the presence of duplication
adds significantly to the overhead of managing the UIC as an indexed field.

The SQL statements used to test the update and delete functions were,
respecti: 2ly:

2-60

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

UPDATE HEAFZR SET UIC = -(UIC) WHERE PRIMARY KEY =
and
DELETE HEADER WHERE PRIMARY KEY =

The results of the update and delete tests are summarized in the table

below:
ORACLE UPUATE AND DELETE RESULTS
uIC Average |[% Degradation| Average |% Degradation
Duplication Factor Update Timelin Average Delete Time| in Average
(Sec) Update Time (Sec) Delete Time
All Values Unique .26 .- .26 -—-
All Values .28 + 7.7 27 + 3.8

Repeated Two Times

A1l Values .27 + 3.8 .27 + 3.8
Repeated Five Times

All Values .27 + 3.8 .27 + 3.8
Repeated Ten Times

The results show that no inherent cverhead exists due to the implementation
of the B-tree management logic chosen in ORACLE that is associated with the
presence of duplicate key values.

The second group of loading results are shown in the following table.
In both runs, the UIC field was defined as a 10 byte character string. In
the first run, the first 6 characters were the String 'UICUIC' and the last
4 characters were unique. In the second run, the first 4 characters were
unique and the last 6 characters were the constant string 'UICUIC'.

2-61

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

ORACLE LOAD RESULTS

uIC Average % Degradation
Description Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
'UICUIC* (variable) 2.41 -—-
(variable) 'UICUIC' 2.39 +.8

The aifferences in insertion rate between the two runs appears to be
negligible.

The statements which were used to update and delete 2% of the records
in the data base are shown here.

UPDATE HEADER SET UIC= °XICUIC _______f WHERE PRIMARY KEY =
or
_ uIcuix'
and
DELETE HEADER WHERE PRIMARY KEV =

A table showing the results of updating and deleting records in the
two cases follows.

2-62

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORACLE UPDATE AND DELETE RESULTS

uIC Average | % Degradation | Average | % Degradation
Description Update in Average Delete in Average
Time Update Time Time Delete Time
(Sec) (Sec)
‘UICUIC' (variable) .45 .- .27 -—-
(variable) ‘'VICUIC’ A4 - 2.2 .29 + 7.4

While there were differences in modifying and deleting records in the
two data bases, the differences were not large enough to draw any definite
conclusions about partial duplication in 31 character string.

ORACLE Version 3.0 Results

The data biase design used herc was identical to that used in the
ORACLE Version 2.3 results presented in the section prior to t.is. In this
testing, the old space definition, as defined in Section 3.2.1.1.2 of this
report, was used.

First, a data base was loaded 4 times. The loads were identical
except for the amount of repetition present in the UIC field. After each
data base was loaded, one hundred headers were modified, and then the same
one hundred records were deleted.

2-63

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

The 1oad results are summarized below.

ORACLE LOAD RESULTS

UIC Duplication Factor Average % Degradation
Insertion Rate in Average
(Hdrs/Sec) Insertior Rate
A1l Values Unique 3.52 -—-
A1l Values Repeated Two Times 3.44 + 2.3
A1l Values Repeated Five Times 3.49 + .9
A1l Values Repeated Ten Times 3.49 + 9

The duplication factor did not appear to have any significant effect
on the load rates of the four tests.

Likewise, when 100 UIC fields were modified, and when one hundred
records were deleted from the data base, no significant variations in rates
appeared as a result of duplication in an indexed field. Because the
average update times are rounded to two decimal places, the degradation in

the second run appears as 10.5%. However, the degradation in total connect
time was about 8.8%.

The SQL statements supplied to update the UIC field and delete records
from the data base are stated below.

UPDATE HEADER SET UIC = - (UIC) WHERE PRIMARY KEY =
and
DELETE FROM HEADER WHERE PRIMARY_KEY =

The resuits of the two tests are shown in the tahle below.

2-64

BUSINESS AND TECHNOLOGICAL SYSTEMS, Inc.

ORACLE UPDATE AND DELETE RESULTS

UIC Duplication Factor Average % Degradation Average
Update Time in Average Delete Time
(Sec) Update Time (Sec)
A1l vValues Unique .19 -—- +26
A1l Values Repeated
Two Times .21 + 10.5 .26
A1l Values Repeated
Five Times .20 + 5.3 «26
All Values Repeated
Ten Times .20 + 5.3 .26

SEED Version C.00.03 Results

As in the two previous sections, this testing was carried out by the
use of the two methods of direct access of a variable, creating a record
and creating an index., The data base structures were identical to the
structures in Section 2.3.1.

In the first group of tests when the method of access was “Record",
the method of altering 2% of the records in the data base was defined as
described here and as shown in the following flow chart.

First, the primary key was formed and the correct R4 _PKEY record was
obtained by "CALC"ing on this primary key. Next, tne owner of this record
in the set connecting the R6_UIC record and the R4 PKEY record, was found.
Because the testing was being performed using the UIC field as the field
with duplicates, each unique value of UIC corresponded to one R6_UIC record
and many R4_PKEY records. The value of UIC was then altered to its
additive inverse in the SEED workspace. Because there was a possibility
that one of the previous updates had the same UIC value as the current one,
e -t “rde tn see whether an R6_UIC record had already been stored

2-65

BUSINESS AND TECHNOLOGICAL SYSTEMS, INc.

with the current additive inverse value. If so, the record was made
“current". Otherwise a new R6_UIC record was stored. Next, the value of
UIC on the R4 PKEY record was ai.ered to its additive inverse and its owner
was changed to the new (or newly obtained) R6 UIC record. Finally, a check
was made to see if the original R6 UIC record (before the additive inverse
was performed) had any remaining members. If not, the R6_UIC record was
deleted.

2-66

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED Flow Diagram

Form Primary Key

1

Find Correct R4 PKEY Record
(OBTNCY

Find R6 UIC Cuner
(OBTNO)

Set UIC Value in R6 UIC
to its additive inverse

Attempt to locate an
R6_UIC record with this
value (OBTNC)

Yes
does such a

record exis

Store an R6_UIC
with this new value

-

alter the value of UIC
in the R4 PKEY record and
change its owner to the

new R6 UIC (MODIFS)

\

check to see if the
original R6_UIC record has
any members left
(CNTMEM) ;
if not, delete it
(DELETE)

2-67

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The deletes were carried out in the ‘ollowing way. As in the alter,
the primary key was formed, the R4 PKEY record was found, and its owner,
the R6_UIC record was found. Then, if the owner had only one member, it
was deleted along with the R4 PKEY. If the owner had more than one member,
only the R4 _PKEY was deleted.

When the method of access was "Index", the alters were performed as
follows. The primary key was formed and the correct R4 PKEY record was
accessed (OBTNC). The UIC field in R4_PKEY was modified. Any change
necessary to update the B-tree was also performed. The delete was very
similar. The primary key was formed, the R4 PKEY record was obtained
(OBTNC) and deleted. The proper entry in the B-tree was also deleted.

The loading results are shown in the table below.

SEED LOAD RESULTS

Average % Degradation | Total {Total
uIC Insertion in Average Connect} CPU
Duplication Rate Insertion Rate | Time |Time
Method Factor (Hdrs/Sec) (Sec) [(Sec)
Record{All Values Unique 2.71 -— 1,847,] 943.
A1l Values Repeated
Two Times 3.24 - 19,6 1,541, 800,
A1l Values Repeated
Five Times 2.79 - 3.0 1,790.] 737.
All Values Repeated
Ten Times 3.24 - 19,6 1,544, 721.
Index [Al1 Values Unique 4,27 - 1,171.] 666.
A1l Values Repeated
Two Times 4,37 - 2.3 1,145.1 661,
A1l Values Repeated
Five Times 4.31 - .9 1,160.| 659,
A1l Values Repeated
Ten Times 4.24 + .7 1,179.] 673.

2-68

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

When the method of direct access is defined by use of a record, the
results show that the CPU time decreases as the duplication factor
increases. This is because fewer “owner" records are stoied. The correct
UIC record is stored only once for a unique value of UIC and then made
"current"* for subsequent occurrences of the same value. When the method
of direct access is def oy use of an index, the duplication rate does
not seem to have a significant impact on load rates.

The results of altering and deleting records in data bases with vary-
ing rates of duplication on the UIC field are shown below.

SEED UPDATE AND DELETE RESULTS

Average % Average %
Update |Degradation|Delete |Degradation
Time [in Average | Time |in Average
Method| UIC Duplication Factor|(Sec) |]Update Time| (Sec) |Delete Time
Record]All Values Unique 42 -——- .26 -—
A1l Values !
Repeated Two Times .34 - 19.0 .24 - 7.7
A1l Values
Repeated Five Times A5 + 7.1 .26 -—-
A1l Values
Repeated Ten Times .55 + 31.0 «25 - 3.8
‘adex [A11 Values Unique .13 -—-- 27 ---
A1l Values
Repeated Two Times .13 “—— .27 ---
A1l Values
Repeated Five Times 14 + 7.7 28 + 3.7
A1l Values
Repeated Ten Times .15 + 15.4 .28 + 3.7

While a pattern does exist indicating possible degradation in update
performance as the repetition factor of a field increases, in both Record
and Index direct access, there is no evidence to support the idea that
delete functions are severely affected by the duplication rate of an
indexed value. While the delete rates are increasing with increased

* The definition of "current" is most recently accessed.

2-69

BUsSINESS AND TECHNOLOGICAL SYSTEMS, INC.

duplication, the percent of increase is small, indicating possible slight
degradation.

In the second group of tests, when the method of access was "Record”,
the data base was altered by first finding the R4_PKEY record with the
correct primary key (OBTNC) and then finding the owner in R6_UIC (OBTNO).
The R4_PKEY record was altered. A new R6_UIC record was stured with the
modified value and the old value was deleted. In testing the rates for
deletion, the proper R4 PKEY and R6 UIC records were obtained as described
for alterirg, and then both records were deleted.

When the method of access was "Index", the updates and deletes were
performed as follows. The primary key was formed and the correct R4 PKEY
record was accessed (OBTNC). The UIC field in R4_PKEY was modified or
deleted. Any change necessary to update the B-tree was also performed.

The loading results are shown below, grouped again by direct access
method.

SEED LOAD RESULTS

% % of
Average |Degradation| Total |Total| Total
Insertion]Jin Average |Connect| CPU | Connect
uIC Rate Insertion | Time |[Time | Devoted
Method Description (Hdrs/Sec) Rate (Sec) {(Sec)| to CPU
Record|'UICUIC' (variable) 3.02 ~—- 1,657.{ 960. 58
(variable) ‘ulCuIC' ¢.65 + 12.3 1,889.| Yo«. 51
Index |'UICUIC' (variable) 3.69 -— 1,356.} 707.
(variable) 'UICUIC' 4,07 - 9.8 1,236.} 703. 57

While the insertion rate column shows a marked difference in load
rates within each pair of numbers, the total CPU times for each pair are
very similar (less than 1% difference) and the differences in total connect
can be explained by the percentages listed in the last column.

2-70

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The results of updating and deleting the data bases are given in the
tables which follow,

SEED UPDATE RESULTS

Average % Degradation
Update Time{ 1in Average
Method] VUIC Description (Sec) Update Time
Record|'UICUIC' (variable) .41 .-
(variable) ‘UICUIC' .42 + 2.4
Index |'UICUIC' (variable) .14 -
(variable) 'UICUIC' .14 -—

SEED DELETE RESULTS

% Total
Average |[Degradation| CPU Total |Total
Delete Time|in Average | Time Direct| Page
Method| UIC Description (Sec) Delete Time| (Sec) |}I/0's |Faults
Record|'UICUIC' (variable) 25 .- 15.17 374 450
(va-iable) ‘'ulculic' .28 + 12.0 15.48 381 446
Index |'UICUIC' (variable) .28 -—- 15.21 441 12,425
(varianle) 'UICUIC' .32 +14.,3 | 17.34 474 |4,143

Within each pair of numbers, the average update times do not vary
greatly. In each pair of nur.pers the average delete time is about 12-14%
greater for character strings with the variable partion in the leftmost
bytes. The total CPU times for the two runs employing "Recorg" type direct
access differ by only ahout 2% (15.2 2ind 15.5 seconds, respectively).
However, the total CPU times for the “Index" runs show the same type of

2-7

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

behavior as average delete time (15.2 and 17.3 seconds). The variation can
be explained by comparing the number of direct 1/0's and page faults. In
the run where the variable portion of the character string is in the
rightmost bytes, the number of direct 1/0's and page faults are 441 and
2,425, respectively. In the other run, the number of dirf. £ I/0's and page
faults are 474 and 4,143,

INGRES Version 1.3 Results

In this testing, eack of the four data bases (i.e., 5,000 unique
values of UIC, 2,500 unicue, 1,000 unique, and 500 unique) was loaded using
the INGRES copy command. Each was fnitially loaded a: heap aata, and
indices were then created for the concatenated primary key (MIDSID, SSC,
SDF, TIME), MIDSID, TIME, and VIC.

After each data base was loaded, 100 records were modi<ied to *heir
additive inverse, and then the same 100 records were deleted.

The results of loading the four data bases are shown below. The
results are broken down into tasks.

INGRES LOAD RESULTS

Create | %
Create |Indices |[Create Average Degradation
Index |on MIDSID| Index Insertion | in Average
Data Base Load jon PKEYland TIME |on UIC|Total|Rate Insertion
Design (Sec)l(Sec) |(Sec) (Sec) |(Sec)|(Hdrs/Sec) Rate
A1l values
Unique 167.] 156. 122, 56. 501. 9.98 -——-
All Values
Repeated
Two Times | 174.| 166. 125, 58. 523. 9,56 + 4,2
A1l Values
Repeated
Five Times{ 177.1 151. 126, 57. 511. 9.78 + 2.0
All values
Repeated
Ten Times | 173.| 152, 123, £7. 505. 9.90 + .8
- 1 -

2-72

BUSINESS A¥D TECHNOLOGICAL SYSTEMS, INC.

There is about a 4% maximum difference between the four runs.

In the

column labeled "Create Index on UIC", the maximum difference of 2 seconds
is negligible and can be aitributed to variations in the operating system
software.

are shown in the table below,

INGRES UPDATE AND DELETE RESULTS

The results of updating and deleting records from the four data bases

Average |% Degradation]| Average |[% Degradation
Data Base Update Time| in Average |[Delete Time| in Average
Design (Sec) Update Time (Sec) Delete Time
A1l Values Unique 1.04 -——- 1.25 -—-
All Values Repeated
A1l Values Repeated
Five Times 1.06 + 1.9 1.23 - 1.6
A1l Values Repeated

2-73

Again, there does not seem to be any significant degradation in
updating or deleting due to uniqueness of the indexed value,

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

3.0 LEVEL 2 DATA BASE PERFORMANCE TESTING

The purpose of the tests described in Section 2.0 were to determine
the impact of various schema alternatives on DBMS performance. To provide
a test bed from which valid comparisons could be made, the test environment
was controlled so that the conditions present for one test were as similar
as possible to those for another. To assure this, the tests were run in a
standalone fashion where the only non-system software requesting resources
was the te.t software (including the DBMS software). The impact of other
computer users was not considered. In normal practice, a DBMS must contend
with other users for the resources offered by the host computer system. It
is also expected that at times multiple users will be simultaneously
accessing the data base. One of the purposes of the Level 2 tests was to
demonstrate the impact of contention for both system and DBMS resources on
data base performance.

A second purpose for the Level 2 test specification was to demonstrate
the impact of "tuning” DBMS and computer system parameters that may influ-
ence data base performance. The DBMS optiois available are fully system
deperdent but can include such things as: data clustering, block size
specification, and cache sizes. Therefore, certain tests which were per-
formed using one DBMS may not have a direct counterpart in testing of
another DBMS.

A1l testing in this section was per formed using the original PMS
design concepts (with the exception of the ORACLE 3.0 testing), which were
subsequently altered for the testing in Section 2. In the ORACLL Version
3.0 testing, the data base design was identical to that used in the Section
2 testing. Because the results of this section will be used to determine
the kind of degradation that might surface when contention is introduced in
a system, it is believed that the data base cesign or change of design
between DBMSs is not as important as is “he change in performance within a
single DBMS when contentior is introduced. See Appendix I for more
information on the test ervironments.

BUSIVESS AND TECHNOLOGHICAL SYSTENS, INC

3.1 Contention With Other Users

Contention with other users falls into two categories, contention with
DBMS and non-DBMS users. A set of tests were developed to measure the im-
pact on data base performance of each type of contention.

3.1.1 Contention With Non-DBMS Users

To measure the effect of non-DBMS users on the performance of a DBMS,
a series of tests were conducted. First, two control runs were made., Each
of these runs measured the presence of one function at a time in the
computer in standalone mode. In the first control run, 50 queries were
made on a PMS-like data base containing 5,000 header packets, and in the
second control run, a non-data base related FCRTRAN program was compiled.
Next, to measure the effect of the FORTRAN compilation on the data base
performance, the FORTRAN compilation was performed three times while a
5,000 header PMS-like data base was being loaded. Finally, to measure the
effect of an outside process on query performance, a compilation and single
query (retrieving 50 packets) were submitted simultaneously, followed by a
compilation and 5 query jobs (retrieving 50 packets each) submitted
simultaneously.

ORACLE Version 2.3.2 Results

The ORACLE data base used in these tests consisted of the single
header table pictured below:

HEADER Table

KEY*{SID*|MID*|SSC|PLP|SDF*|SHID|SIEC| TIME*|PLS|SECHDR |UIC*|COMMENT

* Indexed Field

3-2

ORIGHEAL &0 .
BUSINESS AND TECHNOLOGICAL SYSTEMS, INC. OF POOR QUALNI L

A job was submitted to load 5,000 PMS-like headers into a data base.
As the data base was being l1oaded, an interactive FORTRAN compilation was
submitted three times at approximately 300, 600, and 900 seconds from the
start of the load. The graph below summarizes the load performance by

plotting the connect time in seconds for each “PMS burst" of seventy-two
headers,

BHA

e -

: Load Summary
& ORACLE PMS 5K Record Data Base
’ In Contention with

3 FORTRAN Compi.ations

The three peaks at bursts 12, 20, and 29 have been starred to identify
the occurrence of the FORTRAN compilations. The graph shows that the
performance of ORACLE 2.3 in loading the data base was continually

degrading as more records were added. So while the starred points do not

show a dramatic reduction in performance, it should be noted that each
starred point forms a peak, with the point on either side of each star

3-3

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

somewhat lower (3-4 seconds). On either side of the peak at the 12th
burst, the average insertion rate was about 2.2 headers per second. The
rate at the 12th burst was about 2 headers per second. Likewise, on either
side of burst 20, the rate was about 2.15 heau>rs per second, while the
rate at the 20th burst was about 2 headers per second. Finally, on either
side of the 29th burst, the rate was about 2.1 headers per second, but the
29th burst loaded at 1,96 headers per second. It can be concluded that, as
would be expected, outside processes do have an impact on data base
performance, however slight.

In order to assess the impact of non-DBMS activity in the query
environment, the same FORTRAN compilation was used in conjunction with the
query routine employed in previous tests that selected 50 rows from the
table by qualifying the "WHERE"™ clause with a unique KEY value (e.g. SELECT
¢ FROM HEADER WHERE KEY =). The test consisted of the submission
of the FORTRAN compilation along with a single query job and then along
with five query jobs.

A summary table of the four runs appears below. In the column titled
"Query Times," the connect time is the higher connect time of the job and
the detached process as obtained from the VAX account file. The CPU time
is the sum of the CPU times for the job and the detached process, also from
the VAX account file. The mean time listed under "QOuery Times" is the
average time it took to retrieve 50 headers.

3-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

ORACLE QUERY CONTENTION RESULTS

Description Compile Times Query Times
Higher Mean |Sum Mean
Total Total Total Total
Connect Timej CPU Time |Connect Time|CPU Time
(Sec) (Sec) (Sec) (Sec)
Compile Only 16. 11.55%
(no contention)
Query Only 29. 18.64
(no contention)
Compile & Single 25. 11.37 44, 19.46
Query Run
Compile & 5 57. 11.50 120. 17.36
Query Runs

As would be expected, the performance of both the FORTRAN compilation
and the ORACLE query suffered as a result of contention for system
resources.

ORACLE Version 3.0 Results

The data base design used in this section was given as:

HEADER Table

PRIMARY KEY*IMID_SID*|TIME*|UIC|SDF |MESSAGE | HEADER

® Indexed Field

First, a PMS-1ike data base was loaded with 5,000 header records.
While the load was being performeZ, an interactive FORTRAN program was
submitted for compilation three times, at approximately 180, 4Z0, and 600
seconds into the load. In the graph below, a plot of the data base load is
shown, giving the total connect time for each burst of 72 header records.

3-5

Load Summary
ORACLE PMS 5K Record Data Base
In Contention with
lHBHfORTRAN Compilations

T 14 I
Connect Ti
(seconds

me
)

In the graph, the three points where a FORTRAN compilation was
submitted are starred. These three points stand out very clearly and show
that a data base load can be severely affected by the presence of non-DBMS
activity in the system. On either side of the first starred point, the
data base was loading at about 6 headers per second, while at that 1st
point the rate dropped to about 3.1 headers per second. Likewise, on
either side of the 2nd starred point, the load rate was about 5 headers per
second and at the 2nd point the rate dropped to about 2.9 headers per
second. Finally, on either side of the third starred burst, the rate was
about 4.9 headers per second, which dropped to about 2.8 headers per second
at the 3rd point.

Next, the same type of test was performed, but on querying of the data
base instead of loading. In this test, the same FORTRAN compilation was
executed. The data base query that was performed was

3-6

BUSINESS AND TECHNOLOGIC#-, SYSTEMS, INc.

SELECT * FROM HEADER WHERE PRIMARY__KEY =

The query was performed 50 times. The table below shows the results of
four tests. In the first, only the FORTRAN compilation was executed. In
the next, only the data base query was performed. Next, a FORTRAN
compilation was executed in conjunction with a single data base query, and
finally, a FORTRAN compilation was submitted simultaneously with five data
base query runs. The statistics were obtained from the VAX account file

and each “Query Time" listed is the average time it took to retrieve 50
header packets.

ORACLE QUERY CONTENTION RESULTS

Description Compile Times Query Times
Total Total | Mean Total [Mean Total
Connect Time|CPU Time|Connect Time|{CPU Time
(Sec) (Sec) (Sec) (Sec)
Compile Only 16. 11.55
(no contention)
Query Only 26. 17.17
(no contention)
Compile & Single 34, 12.09 39. 17.04
Query Run
Compile & 5 2S. 11.79 108. 16.92
Query Runs

The presence of both a FORTRAN compilation and an ORACLE query (or
queries) in the system simultaneously had a significant impact on the
performance of both. In a realistic situation, where the contention factor

might be much greater, the degree of degradation could be even more
significant.

3-7

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED Version B.11.9 Results

The data base structure that was used in this testing is shown in the
diagram below, and an explanation of the structure appears in Appendix I.

SEED Schema
R1_MID R2_TIME R3_SDF
S2 6 S35
S3 6
RS UIC
S5 6
]
“al R6_PKEY
S6 7
R7_COMMENT

A job was submitted to load 5,000 PMS-like headers into the data
base. As the data base was being loaded, at approximately 180, 420, and
600 seconds into the load, an interactive FORTRAN compilation was submit-
ted. A graph showing the loading times for every burst of 72 packets
follows. The loading times for the bursts where a FORTRAN compilation
appeared are starred and stand out very clearly in the grapii.

3-8

ORIGHINAL oy
OF POOR QUALILY

BUSIVESS AND TECHNOLOGICAL SYSTEMS, INC

i i

Lnad Summary
SEED PMUS SK Record Data Base
In Contention with

3 VOR’TRAN Compilatiqns

T
1

B et SR
T
;

The average loac rate on either side of the first starred point was
about 6.9 headers per second, but dropped to about 3.3 h-aders per second
at the first starred point, On either side of the second starred point,
the average insertion rate was about 6.3 headers per second, which dropped
to about 3.2 headers per second at that second starred point. Last, the
average rate was about 5.9 headers per second on either side of the last
starred point and about 3.1 headers per second at that point.

In the table b_iow, the results of a compilation run only, a query run
only, a compilation with a single query run, and a compilation with
multiple query runs are given. The query that was performed in these runs
was to locate 1% or 50 Ré6 PKEY records, by forming the unique PKEY value
and "CALC"ing on it, The statistics were taken from the VAX account log
and each query time listed represents the average time for retrieving 50
header packets.

3-9

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED QUERY CCNTENTION RESULTS

Description Compile Times Query Times
Total Total | Mean Total iMean Total
Connect Time|CPU Time|Connect Time| CPU Time
(Sec) (Sec) (Sec) (Sec)
Compile Only 16. 11.55
(no contention)
Query Only 18. 12,04
(no contention)
Compile & Single 29, 11.43 28. 11.41
Query Run
Compile & 5 74. 11.64 76. 11.69
Query Runs

As can be seen in the chart, the presence of both the compilation and
query jobs in the system at the same time severely decreases the perform-
ance of each.

INGRES Version 1,3 Results

The INGRES data base used in this testing is depicted in the table
below.
HEADER Table

MID_SID*|SSC*|SDF*|TIME*|UIC|MESSAGE | HEADER

* Denotes Concatenated Primary Key (Indexed).

Two jobs were submitted to test the impact of contention from a
FORTRAN compilation on loading performance. In the first run, 5,000
headers were loaded into a data base with no structure (i.e. HEAP) using
repeat append. An interactive FORTRAN compilation was executed at
approximately 130, 420, and 600 seconds into the load. In the second run,
the data was loaded using the copy command into a data base with no
structure, The FORTRAN compilatio: wvac executed at approximately 50, 100,

ORIGHIAL Bl
OF POOR QUini-ts
BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

and 150 seconds into the load. The explanation for the change in times for
submitting the FORTRAN compilations during the “copy" load was that the
“copy" load took only 3-4 minutes. 1€ the original set of times had been
used, only one FORTRAN compilation would have been completed. For the
first Toad, the graph below shows the load performance by plotting the
connect time in seconds for each burst of 72 headers. Tre follcwing table
presents the results of the second load versus the results of a similar
load where no contention existed. Because of the nature of the bulk load
command, copy, statistics cannot be broken down by burst. O0Only the total
statistics are available.

. "'"’"”"1f"(7"fj L
HE Helpoa I ;

I _.__l: o ! ! lj‘. oheend

Load Summary

INGRES PMS SK Record Data Base

In Contention with 4 |

3 FORTRAN Compilations .‘“:t -
Rty i

i
Pl
; i

I

o

a0
L o] s |

N NGRS
PMS Headers

U O OO 00O OO St IUOPY IO O .. : i
: I ! l ‘ j
RRRRR S ‘ REERRE

For the entire data base load (except for the 3 starred points), the
average insertion rate was about 4.2 headers per second. That rate dropned
to about 2.5 headers per second at each of the 3 starred points.

3-11

BUSINESS AND TL" INOLOGICAL SYSTEMS, INC

INGRES LOAD CONTENTION RESULTS

Average % Degradation Total
Insertion Rate|{ 1in Average |Connect Time
Load Description (Hdrs/Sec) |Insertion Rate (Sec)
Load using "copy"]
no FORTRAN compilation 28.4 -—- 176.
Load using "“copy"
FORTRAN compilations at
50, 100, 150 seconds 23.7 + 16.5 211,

It is clear that the impact of outside processes on the loading rate
of the INGRFS data base is significant. The difference in total connect
time between the two runs shown in the table above is 35 seconds. Each
compilation used approximately 16 seconds of connect time, or 48 seconds
total for the three compilations. In comparing this number with the 35
second time difference between the “wo loads, it is observed that the data
base load utilizcd only a small portion of the CPU while the compilations
were being performed.

The results of a compilation only, a query run ounly, a compilation
with a single query run, and a compilation with 5 query runs are shown in
the tabia hel . After the data base had been loaded, a hash was created
for the primary key. The query that was performed on 5% of the records in
the data bace was

RANGE OF H TS HEADER
RETRIEVE (H.ALL) WHERE H.®ID SID

"

ANG H.SDF =
AND H,SSC -
AND H.TIME =

The statistics shown are from the VAX account log and each time listed
under "Query Times" represents an average time ror retrieving 50 rows,

BUSINESS AND TECF .OLOGICAL SYSTEMS, INC

INGRES QUERY CONTENTION RESULTS

Description Compile Times Query Times
Higher Mean |Sum Mean
Total Total Total Total
Connect Time| CPU Time{Connect Time|CPU Time
(Sec) (Sec) (Sec) (Sec)
Compile Only 16. 11.55
(no contention)
Query Cnly 36. 24.56
(no contention)
Compile & Single 29. 11.95% 48, 23.10
Query Run
Compile & 5 17. 11.75 148.4 23.33
Query Runs

Query and compilation performance are both severely affected by the
presence of other processes in the system.

3.1.2 Contertion With DBMS Users

Because a user may h ve to contend with other DBMS users for re-

sources, it is important to attempt to measure the affect of multiple users

on DBMS query performance,

This section deals with contention, from both

users contending for the same data base and users contending for different

data bases.

3.1.2.1 Users Contending for the Same Data Base

In this section, the following tests were devised.

First, a set of

control runs were made which measured all non-data base related activity in

a FORTRAN query program.
ten users and fi.teen users, performed all of the logic which is

specific.

of runs included the DBMS logic that was excluded in the control
Results of this set of runs demonstrate the iwpact of additional
are contending for similar data base resources.

A set of eleven runs, consisting of from one to

3-13

Then a second set of the eleven runs were conducted.

not DBMS
This set
set.
users who

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

Comparison of this set's results with those of the control set (between
equal numbers of users present) should provide an indication of the amount
of influence the DBMS logic has versus that of the remainder of the FORTRAN
code present in the tests. Finally, because it is highly unlikely that two
users wou:d query the data base at exactly the same time, 2 set of three
runs were conducted, but in this set, instead of submitting the jobs
simultaneously, the jobs were submitted at three second intervals. The
three runs consisted of 5, 10, and 15 users, respectively.

ORACLE Version 2.3.2 Results

The ORACLE data base was identical to the PMS-like application used in
Section 3.1.1. The single table used is summarized below:

HEADER Table

KEY*{SID*{MID*{SSC{PLP{SOF*{SHID|SIEC]TIME*{PLS|SECHDR{UIC* | COMMENT

* Indexed Field

The data base contained 5,000 PMS-1ike header records, and a single FORTRAN
routine which made 50 gueries of the following nature was submitted.

SELECT ® FROM HEADER WHERE KEY =

The FORTRAN query was submitted simultaneousiy to generate the desired
contention levels from which the results below originated.

The table which follows shows the mean connect and CPU time for the
control runs and the cortention runs when from one to ten, and then 15
users were attempting to access the data base simultaneously. Also
reported are the results of the three runs submitted with a three second
wait., The contention means are reported as the higher of the mean connect
times and the sum of the CPU times for the FCRTRAN and det ched process
runs obtained from the account log. Each “"mean" time represents the
average time it tcok to retrieve all 50 rows, not just one row.

3-14

BUuSInESS 4%D TECHNVOLOGIC .L S)STENS, INC

ORACLE QUERY CONTENTION RESULTS

Number Control Run Contenticn Contention with
of (No db access) 3 Sec. Wait Interval
Users
Mean Total Mean Higher Mean |[Sum Mean|Higher Mean |Sum Mean
Connect Time| Total Total Total Total Total
(Sec) CPU Time||Connect Time|CPU Time|Connect Time|CPU Time
(Sec) (Sec) (Sec) (Sec) (Sec)
1 12.0 8.4 29.0 18.64
2 20.5 1.9 46.5 17.48
3 38.7 8.2 62.0 17.28
4 40.0 8.0 83.0 17.32
5 47.7 1.7 108.0 17.20 101.4 17.39
6 60.3 7.8 121.3 17.03
7 68.9 7.9 155.7 17.44
8 79.3 7.9 168.3 17.28
9 88.4 8.0 190.1 17.43
10 99.2 7.9 209.6 17.59 194.6 17.76
15 137.3 7.8 291.6 17.40 291.0 18.11

These results show a relatively constant increase in conpect time propor-

tional to the number of contending jobs present.

The average CPU time does

not vary significantly as the number of users increases, indicating that no

internal contention for ORACLE resources occurs.

tise

see,

as demonstrated by the results of the control runs.

The degradation in connect
coserved when contending jobs are present is what one would expect to

Examination of some other statistics revealed an impressive example of

the effectiveness of ORACLE's 1/0 buffering and caching techniques.

Below

is a table which summarizes the average number of direct I/0 operations per-
formed by the detached processes spawned by ORACLE for each active FORTRAN
query job submitted.

BUSINESS A\D TECHNOLOGICAL SYSTENMS, INC

ORACLE QUERY CONTENTION RESULTS

Number of{ Average Number of Direct | Average Number of Buffered
Users 1/0 Operations 1/0 Operations
Per Detached Process Per Detached Process
1 129.0 340.0
2 62.5 373.5
3 46.0 378.0
4 36.0 361.0
5 30.2 381.6
6 26.2 416.5
7 23.6 418.3
8 21.6 427.3
9 21.2 493.3
10 20.4 484.2
15 42.1 574.1

The dramatic reduction in direct 1/0's per process is possible because
ORACLE recognizes the presence within its own buffers of the logical blocks
requested by the detached process. This eliminates the need to iniliate a
direct read. It should be noted that, since each job in the test is
reading the same set of logical blocks, the results above exaggeratc e
effectiveness of ORACLE's 1/0 buffering and caching somewhat. The increase
in average I/0's at the fifteen user level is evidence of this fact since
at this point the operations have begun to lose some of their
synchronization resulting in some blocks being read more than once. Also
included in the preceding table is the average number of buffered 1/0's per
each detached process. These operations are primarily related to VAX
"mailbox" communications and it is not clear why they are increasing as the
number of processes present increases.

3~16

BUSINESS AND TECHNOLOGICAL SYSTENXS, INC

ORACLE Version 3.0 R.sults

In this testing, the ORACLE data base design was identical to that in
Section 3...1, and is shown here.

HEADER Table

PRIMARY_KEY*IMID SID*|TIME*|UIC|SDF {MESSAGE | HEADER

* Indexed Field

in t is scenario, 5,000 PMS-like header records had previously been
loaard into the data base. From one to ten, and then 15 users queried the
data base, each executing the following query on 1%, or 50 of the records
in the data base:

SELECT * FROM HEADER WHERE PRIMARY_KEY =

The table below shows the results of control tests where no data base
FORTRAN code was executed followed by the resuits of runs where the data
base FOF TREN code was exacuted and the jobs were submitted simultaneously,
and finally where tt_ runs were submitted in 3 second intervals. In each
entry of the table, the results shown are the average of the results
obtained for that number of users as reported in the VAX account file.

Each "Mean Total Cornect Time", for example, represents the average time it
took to retrieve all 50 records.

3-17

BUSINESS AVD TECHNOLOGICAL SYSTENS, INC

ORACLE QUERY CONTENTION RESULTS

Number of Control Run Contention Contention with
Users (No db access) 3 Sec. Wait
Interval
Mean Total| Mean Mean Total] Mean Mean Total| Mean
Connect Total Connect Total Connect Total
Time CPY Time| Time CPU Time{ Time CPY Time
(Sec) (Sec) (Sec) (Sec) (Sec) (Sec)
1 12.0 8.4 26. 17.17
2 20.5 7.9 45, 16.55
3 38.7 8.2 62. 17.01
4 40.0 8.0 81. 17.07
5 47.7 7.7 101. 16.70 93. 17.14
6 60.3 7.8 120. 16.95
7 68.9 7.9 139. 16.68
8 79.3 7.9 157. 16.55
9 88.4 8.0 174. 16.51
10 99,2 7.9 197. 16.71 178. 16.96
15 137.3 7.8 283. 16.42 259. 16.83

There is an almost linear increase in total connect time as the
number of contending users increases. The CPU time does not vary
significantly between runs however, indicating little if any contention for
ORACLE resources. Arother indication of this is the fact that in all
cases, the total cconnect time in the column headed "Contention" is about
2 to 2.1 times the total connect time in the column headed “Control Run.”
If there was any contention for data base resources present, this factor
would not remain constant. It should also be noted that an improvement in
performance occurs when the jobs are not submitted simultanecusly.

SEED Version B.11.9 Results

The data base desigr used in this testing was identical to the design
described in Section 3.1.1. The data base was loaded with 5,000 PMS-1ike
records and then 50 queries were performed. In the query, the primary key,
PKEY, was formed and the proper record was found by hashing on the PKEY
value (OBTNC).

BUSINESS AvD TECHNOLOGICAL SYSTENS, INC

The table below shows the mean total connect time and mean total! CPU
time for the control runs and contention runs, when from one to ten, and

then 15 users were attempting to access the data base simultaneously. Also
summarized are contention runs with 5, 19, and 15 users present with a
three second interval between the submission of contending runs. The
statistics were obtained from the VAX account file, "Mean Total ™ is

interpreted as the average time it took to retrieve all 50 records.

SEED QUERY CONTENTION RESULTS

Number Cortrol Run Contention Contention with
of (No db access) 3 Sec. Wait Interval
Users
Mean Total| Mean Mean Total| Mean Mean Total| Mean
Connect Total Connect Total Connect Total
Time CPU Time| Time CPU Time Time CPU Time
(Sec) (Sec) (Sec) (Sec) (Sec) (Sec)
1 12.0 8.4 18.0 12.0
2 20.5 7.9 30.5 11.9
3 38,7 8.2 45.3 11.9
4 40.0 g.0 61.0 11.5
5 47.7 7.7 79.4 12.0 65.6 12.1
6 60.3 7.8 97.7 12.8
7 68.9 7.9 170.9 14.0
8 79.3 7.9 250.0 14.6
9 88.4 8.0 302.9 14.7
10 99,2 7.9 367.6 14.8 122.9 12.4
15 137.3 7.8 562.3 14.6 359.1 13.8

While the mean CPU time continued to be fairly constant throughout the
control runs, it increased as the number of users increased in the
The increase in r.ecan CPU time might be attributed to the
fact that when a job is running and an interrupt occurs, the overhead of
processing that interrupt is charged to the job.
trying to run simultaneously increases, the number of interrupts increases
and the likelihood that a job is actively running when an interrupt occurs

contention runs.

As the number of jobs

3-19

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

(rather than a system routine) increases, thus the increase in mean CPU
time. The biggest jump in mean total connect time takes place between 6
and 7 users., It is most likely that, at this point, in addition to the
extra overhead of processing interrupts, the virtual system began to swap
jobs in and out of memory more frequently because of a lack of main memory
partitior space available to satisfy all the jobs present.

By submitting the query jobs at 3 second intervals, which represents a
more realistic scenario, the contention for resources was reduced signifi-
cantly.

In the following graph, the mean connect time of query related
activity is plotted versus the number of jobs contending for resources.
The mean connect time is the average time necessary to retrieve one R6 PKEY
record. As in the previous table, a large jump appears hetween 6 and 7

users.
[TR A e m i At N Sl st S S A
; Contenticn Querying
F i . SEED PMS 5K Record Data Base
o {]
.]
S S
e
LI R
Mean Connect 4 § i | i f i
Time of - | i 171
Nuery Related | :f |
Activit l

AR

il

Lt
T Tl L

IS T AR

9 o 11

ue

- 8
L St U OO O UL VR WA 5 T O LR A5 50 [A O T 6 I WO WO (40 WO LA ST
; Number of Contending ()
I .

4
9
I

EENRERH RN R

3-20 ORIGHVAL Fiu. o .
OF POOR QUALITY

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES Version 1.3 Results

The INGRES data base used in this testing was identical to that used
in Section 3.1.1. The data base contained a single table, HEADER, which is
described in the diagram below.

HEADER Table

MID_SID*|SSC*|SDF*|TIME*|UIC|MESSAGE | HEADER

® Denotes Concatenated Primary Key (Indexed)

The table was stored in hash structure with the hash being on the multi-
field key consisting of MID SID, SDF, SSC, and TIME. The query that was
performed (on 50 records) to assess the impact of multiple users accessing
the data base simultaneously was:

RANGE OF H IS HEADER
RETRIEVE (H.ALL) WHERE H.MID SID

AND H.SOF =
AND H.SSC =
AND H.TIME =

The table below is a comparison of the control runs (i.e. no data base
access), simultaneous contention querying, and contention querying with a 3
second wait. The statistics were generated from the VAX account log. The
"means" reported represent the average time it took to retrieve all 50
rows .

3-21

BUSINESS AND TECHNOLOGICAL S YSTEMS, INC.

INGRES QUERY CONTENTION RESULTS

Number Contention Contention with
of Control Run 3 Sec. Wait Interval
Users | (No db access)
Mean Total| Mean Higher Mean |Sum Mean|Higher Mean |Sum Mean
Connect Total Total Total Total Total
Time CPU Time|{Connect Time{CFU Time|Ccnnect Time|CPU Time
(Sec) (Sec) (Sec) (Sec) (Sec) (Sec)
1 12.0 8.4 33 23.48
2 20.5 7.9 58.5 23.24
3 38.7 8.2 85.7 23.37
4 40.0 8.0 113.3 23.38
5 47.7 7.7 141.4 23,35 132.2 23.17
6 60.3 7.8 171.2 23.54
7 68.9 7.9 209. 23.54
8 79.3 7.9 227.3 23.48
9 88.4 8.0 258.9 23.44
10 99,2 7.9 284, 23.48 264.6 23.42
15 137.3 7.8 425.6 23.55 384.7 23.50

While the CPU times remained relatively constant throughout the entire

scenario of runs, indicating no contention for INGRES resources, the
connect times increased proportionately to the number of contending jobs

present.

This was to be expected.

The difference in total connect time

between jobs submitted simultaneously and those submitted with a 3 second

wait interval is significant.

Another interesting statistic which appeared was the number of direct

1/0's issued per user for contending users.
following table.

3-22

These are shown in the

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES QUERY CONTENTION RESULTS

Number| Average Number of Direct [/0 Operations
of Per Detached Process
Users

Simultaneous Submits|3 Sec. Wait Interval

61.

35.

26.3
22,

19.4 32.
17.7
16.4
15.5
14.8
14,2 24.1

SOXNOO N P2WMN -

P g
(3,

13. 34.7

Each of the contending jobs reads the same set of records from the
data base. This table suggests that INGRES can recognize that certain
logical blocks are already in its buffers and eliminate a direct I,0. This
can be seen more clearly by comparing the two columns in the table. When
the jobs are submitted simultaneously, there is a greater chance that the
logical block requested by one process will 5till be in a buffer from a
previous process. In contrast, where there is a 3 second wait between
jobs, there is a higher likelihood that by the time a job requests a
certain logical block, the buffer where that block may have resided has
been replaced with a new record.

3.1.2.2 Users Contending for Different Data Bases

This section was included to assess the impact on a user's process
when other users are contending for data base rescurces, either of the same
or different data bases.

3-23

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

In this test, varying numbers of PCDB queries and PMS queries were
submitted simultaneously. The PCDB query which was performed accessed the
TAPEID, ARCHIVER, CAT, and CATEGORY for each tape in the data base. The
PMS query accessed 5%, or 250, of the header records in the data base.

In each test, up to 5 queries were submitted. The test was conducted
using the ORACLE and SEED DBMSs.

ORACLE Version 2.3.2 Results

The original PMS design was used for this testing. Both this design
and the PCDB design are discussed in Appendices I and II, respectively.

In this test, varying numbers of PCDB queries and PMS queries were
submitted simultaneously. The queries chosen for the PCDB and PMS
applications were:

PCOB - SELECT TAPE.TAPEID, ARCHIVER, CAT, CATEGORY
FROM TAPE, CAT
WHERE TAPE.TAPEID= <'__
AND TAPE.TAPEID=CAT.TAPEID

PMS -~ SELECT * FROM HEADER WHERE KEY = ' !

In the PCDB query, the information was retrieved for each of 55 tapes
in the data base. In the PMS query, the information was retrieved for 5%
(or 250) of the records in the data base.

In each test, up to 5 queries were submitted. The results are shown
in tne table on the next page and were obtained from the VAX account file.
The numbers across the top of the page represent the job number within a
test, The tests are divided by the horizontal lines. Within a test, the
term PCDB or PMS is placed next to the results, indicating which query was
executed., For example, the first test consisted of cne PCDB query and the
last test consisted of two PCDB queries and three PMS queries. For each

3-24

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

test, the results include both the host job and the detached process. The
connect time given is the higher of that for the job and the detached
process. The CPU time is the sum of the CPU time for the host job and the
detached process.

The PCDB query results indicate that response time was more dependent
on the total number of jobs in the system rather than the number of PCDB
jobs in the system. Looking at rows 1, 7, 11, 12, and 13, where there is
one PCDB job in each, the connect times increased as the total numoer of
jobs increased. Looking at rows 2 and 7, the presence of a PMS job
impacted the results of the PCDB query more than the presence of 2 PCDB
queries in the system.

Likewise, the PMS query results were more dependent on the number of
PMS jobs in the system rather than the total number of jobs. Looking at
rows 6-10, the PMS connect times ranged from 78 seconds to 138 seconds. In
each jobt there was one PMS query present. In row 1i, two PMS jobs were
introduced. The connect time for each was abcut the same as row 10, where
there were 5 jobs, but only 1 PMS job. 1In row 8, where there were 3 jobs
present, but only one PMS job, the connect time for that PMS job was
significantly lower than in row 11.

This seens to indicate a much higher contention for resources when PMS
jobs were introduced. It should also be noted that when one PCDB query was
present, the CPU time was 54% of the total connect time, and when one PMS
query was present, the CPU time was 64% of the total connect time,

3-25

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

8U°8F SWd °602

(4°8y SWd °602

6L°6y SWd “ZIC

16°01 80y °28

1Lt 8004 06

e
—

56°8¢ SWd 691 b0°6t SWd “bLl 29°11 8G62d °16 (6°21 8024 "6 v9° 11 8024 "8 s1
v5°6v SWd €51 B8°Lb SWd "/S1 89°11 302d "/ 0S°El 802d "/ 1
12°8y SWd "162 bL*8y SHd “6b2 2676y SWd "9p2 L1°(y SHd °*8b2 08°El €024 "06 £t
65°9% SWd °881 26°8t SWd °681 12°9Y SWd "161 69°€l 9024 '69 21
£5°8v SWd "9El S8°[p Sad ‘Otl 16°E1 802d (S 1t
¥8°6% SWd °SEIL 61711 8024 °¢8 Zv°€l 80X °68 €11 80)d “€6 £L°21 900d 16)
83°6¢ SWd 221 8511 490)d °89 £6°11 803d “wL SU'vl 802d ‘2f 6
16°6% SKRd "401 G*21 80)d “¥S §6°21 802d °{S 8 |
(6°8¢ SWd "B 26°¢1 8024 °Sb I
21°0S SWd “ue 9
8111 903d ‘¥ 1€°21 80)d °6{ 5621 8024 °2Z8 £0°cl 802d °28 56"yl ©0dd °S8 5
92°11 #0)d ‘€9 26721 3024 °v9 2011 902 °S9 86°11 8024 °19 v
69°21 8024 “6b op- 11 9024 °8¥ 9€°2l 80)d €5 £
SE°0T 902d °2¢ 28°21 8034 “¥E 2
2L°ET 800d T92 I
(oas) awyy (0a3S) awiy)(vas) awil (23s) awyjf(23g) awiy (2as) awy)|(das) awyy (23s) awy]|(2a5) awjl (235) awyg
ndd 393UuU0) nda 353uu0) nda 3J3uuo) ndJ 323uU02 ndd 353uuc)
Is3)
S) £ 2 1 qop

S3143N) SWd PUe §02d-3TIVH0

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED Version B.11.9 Results

The data base designs for both the PMS application and the PCDB
application appear in Appendices I and II, respectively. In this testing.
the original PMS design was used.

In this scenario of runs, varying numbers of PMS-like queries and PCDB
queries were submitted simultaneously. In each test, a maximum of 5
queries were submitted. The following chart shows the results of each
test, as reported in the VAX accounting log. The horizontal line divisions
separate tests. ~"e numbers across the top of the chart stand for job 1,
2, 3, 4, and 5 within the test. Above the job is a specification of
whether the job was a PMS or PCDB job. For example, test cne corsisted of
one PCDB query and test two - 2 PCDB queries. Test 7 consisted of one PCDB
query and one PMS query submitted simultaneously, and so on.

One PCDB query consisted of retrieving the TAPEID, ARCHIVER, CAT, and
CATEGORY for each of the 55 tapes in the data base, by “CALC"ing on the
TAPEID.

One "MS-1ike query consisted of retrieving a PMS header after
computing the PKEY value from the input record and "CALC"ing on it. This
was repeated for 5% (or 250) of the records in the data base.

While the CPU times for the PCDB queries remain constant, and the CPU
times for the PMS queries remain constant (though much greater than the
PCOB queires), the connect times increase as more jobs are in the system,
The connect time for the PCDB runs is more dependent on the total number of
jobs in the system than the number of PCDB jobs in the system. The connect
times for the PMS runs are dependent on the total number of jobs in the
system but also on the number of PMS jobs within the total number. This
tends to indicate a greater contention for data base resources in the PMS
query than in the PCDB query.

BUSINESS VD TECHVOLOGICAL SYSTEMS, INC

28°61 °88 9¢'61 ‘98 96°81 8 22°S *vE 1€°g ot 91
] . Skd Sid SHd 8024 9024
92°61 ‘2 LL8t 1 91°s v St ‘62 £2°6 9 §
Shd Shd 8024 8034 902d ¢ !
0’6 ‘€9 $0°61 ‘99 LS ‘62 My *92 Pl
Shd Shd 804 8024
9L°61 €01 T ‘901 5161 * 601 t2ro2 101 92°g ‘92 £1
She Shd K SHd SHd 8924
L6t ‘Ul 02°61 *6¢ 1881 (L 61°S ‘e at
SWd SWd SWd 8024
02°61 L) 18°81 * LS 225 4 11
Shd SHd " 8024
£6°91 ‘29 82°s ‘9f G1°¢ ‘£ P1°s ‘SE 02°s 82 ot
SWd 802d 4024 802d 8024
60°61 '€ {0°s 62 61°S ‘82 1875 82 6
3Wd 8024 9024 8024
£0°61 ‘9 $0°S ‘€2 g T2 8
= SHd 802d 2024
88°81 '8¢ 61°g ‘91 i
Shd 8024
€8t 2t 9
Shd
v2's ‘e 91°g "1 66"t "ot 288" X 12°s ‘0t g
402d 80)d 8024 8024 904
p0'S ‘2 1184" ‘62 81°S L2 (284 74 ¥
§02d 802d 802d 4034
86°% ‘12 92°§ ‘12 ve's (2
802d 402d 802d ¢
50°S Kl 02's "Gl 2
8024 802d
L0°s 11 1
4d2d
29 ow 29 ow 79 u 29 W 23 u 295) 9 au 35 <) au HeT] El
A mwnu H n uwwc:a%h A mw_au H A uwwccow» A mwiu H A w.u. ::w””ws_. Mu@mw—au " Auww :WM 1 Au@ QU: Mo uw,Wc:.%Wh
] 1531
§) £ F4 1 500

$3j4anh) SWd pue gUld-034s

3-28

Bt SINESS 4ND TECHYOLUGICAL SYSTENS, INC

3.1.3 Contention Between Query and Load

In some applications the data base may be updated dynamically as users
are accessing it. This can occur when the data is very volatile or when
large volumes of data must be added in real time to keep up with the input
rates. The latter of these is the case with the PMS application. Large
volumes of data must be ingested in real time or the backlog would result
in lost data. In order to see what impact may exist to the load rates if
users were simultaneously querying the data base, a set of tests were
devised which would demonstrate load rates with from zero to five contend-
ing users querying the data base. This test was performed at the request
of the PMS project team and was done using only ORACLE Version 2.3.Z.

ORACLE Version 2.3.2 Results

A PMS-1ike data base with 5,000 PMS headers was used as a base point
to conduct the test. The HEADER table used had the following makeup:

HEADER Table

KEY*|SID|MID*{SSCIPLP|SDF { SHID|SIEC} TIME|PLS|SECHDR |UIC | COMMENT

* Indexed Field

The 5,000 row table was increased by 720 rows during each of six
tests. In the first test, only the load was present, which serves as the
control run. 1In the other five tests, 2 job was submitted from one to five
times, respectively, which made 250 queries of the following nature:

SELECT ® FROM HEADER WHERE KEY =

The KEY value used was different for each of the 250 queries but the same
250 values were used for each job submitted.

3-29

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The table below shows some of the results obtained from thess tests.
These results were obtained from the YAX accounting file. It shou'd be
noted that a single query job without contention from a load job used about
78 seconds of connect time and 50 seconds of CPU time.

ORACLE QUERY AND LOAD CONTENTION RESULTS

Number of Load Time for Average Query Time
Query Jobs 720 Headers Per Query Job
Present
Connect Time CPU Time Connect Time CPU Time
(Sec) (Sec) (Sec) (Sec)
4] 233.0 127.66 - -
1 273.0 130.06 160.0 51.41
2 321.0 130.74 206.5 50.63
3 381.0 132.90 259.7 49,92
4 438.0 132.52 312.2 49 .57
5 519.0 136.50 385.2 £1.57

These results demonstrate a degradation in load performance that is
proportional to the number 0. query jobs present. In the control run, a
load rate average of 3.09 headers per second is obtained. With a single
query job present the rate drops to 2.64 and with five query jobs present
the rate falls to 1.39.

3.2 DBMS System and Computer System fiptions

The purpose of the tests defined under this section is to determine
tnhe impact of parameters that can be specified to constrain or eni.ance DBMS
performance. The section is divided into two areas - one for parameters
strictly selective under DBMS control, and the second which is related to
parameters selective through the computer operating system under which the
DBMS is to operate.

3-30

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

3.2.1 DBMS System Parameters

Tha flexibility offered by different DBMSs for the selection or defin-
ition of parameters that impact performance vary greatly from system to
system. Some offer little if any "tuning” while others offer a wide vari-
ety of selective options such as variations in 1/0 buffering of informa-
tion, temporary or internal work area sizes, the number of concurrently
active data bases, the size 3f caches to reduce 1/0, the use of backup/
recovery options, and the number of simultaneous users. Because these
types of parameters are DBMS dependent, a direct comparisorn of the results
of one N3MS to the results of another is meaningless and each section
should be studied and assessed independently.

3.2.1.1 ORACLE DBMS System Parameters

In ORACLE Version 2.3.2, the flexibiity offered the data base user for
varying DBMS parameters was limited. The revised Version 3.0 promised to
depart significantly from that in Version 2. For these reasons, formal
testing of DBMS system parameters under Version 2.3.2 was not performed.

However, under Version 3.0, several of the options available to the
user were tested ard the results of that testing will be presented here.
Those options that were tested were 1) varying the number of cache buffers,
2) altering the space definition, 3) clustering data according to the value
in a column or column, of a data base table, and 4) loading alternatives.

3.2.1.1.1 Buffering

A default system parameter file is inciuded with the ORACLE 3.0 pack-
age. The file contains varicus parameters, such as maximum number of
tables which may be defined, default data base file name, and the maximum
number of concurrent ORACLE users. Wnile most of tne detault values
supplied were sufficient for our testing, it appeared that perhaps one
parameter, the number of cache buffers, should be varied to determine its
impact on performance., A cache buffer is an internal buffer area used by

3-31

BUSINESS <ND TECHNOLOGICAL SYSTEMS, Ivc

the data base management system that increases the likelihood that often
used disk pages are available in main memory, eliminating the need to
perform a disk I/0 operation.

The default supplied with the ORACLE package is 50 buffers. In the
testing, this value was increased to 100 and 200 buffers. A data base was
first loaded with 5,000 PMS-1ike headers. The table structure employed in
the testing was:

HEADER Table

PRIMARY_KEY*IMID SID*|TIME*|UIC} SDF [MESSAGE | HEADER

* Indexed Field

After each data base was loaded, two further tests were performed. In
the first, 5%, or 250 records in the data base were accessed by issuing the
following SQL command;

SELECT * FROM HEADER WHERE PRIMARY_KEY =

In the second test, the same query was performed, but there were 5 users
querying the data base simultaneously instead of a single user,

A1l results appeer in the tables below, with a brief interpretation of
results following the final table.

ORACLE LOAD RESULTS

No. of Buffers Average % Improvement
Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
50 { 5.33 . ---
100 6.72 + 26,1
200 7.27 + 36.4

3-32

BUSINESS AND TECHNOLOGICAL SYSTEMS. IvC

ORACLE LOAD RESULTS

No. of Total CPU Time | Total Direct | rTotal Page Faults
Buffers (Sec) 1/0's
50 627.81 10,536 17,943
100 590.36 4,148 11,112
200 588.07 2,426 26,968
ORACLE QUERY RESULTS-SINGLE USER
No. of Total % Improvement| Total Total Total
Buffers|Connect Time in Total |[CPU TimelDirect 1/0's|{Page Faults
(Sec) Connect Time| (Sec)
50 24,22 -—- 15.38 536 2,668
100 23.62 + 2.5 16.05 475 3,599
200 22.25 + 8.1 16.31 399 3,860
ORACLE QUERY RESULTS-5 USERS
No. of | Mean Total % Improvement [Mean Total{ Mean Total {Mean Tota!
Buffers|Connect Time| in Mean Total CPU Time |Direct 1/0's|Page Faults
(Sec) Connect Time (Sec)
50 87.54 -—- 14,54 372 2,840
100 89.55 - 2.3 14.68 315 3,303
200 84,37 + 3.6 14,32 173 3,924

3-33

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The variation in the number of buffers had a significant impact on the
load performance. One hundred appeared to be a good choice for the optimal
value in this application. Whereas the results of the 200 buffer run were
better than either the 50 or 100 buffer results, the improvement was not as
great going from 100 to 200 buffers as going from 50 to 100 buffers. This
can be seen easily in the second table. The improvement in CPU Time was
orly nominally better when 200 buffers were employed as opposed to 100
buffers. While the total number of direct I/0's continued to drop as the
number of cache buffers increased, the number of page faults actually
started to increase with 200 buffers. For this reason, and also because
200 buffers may be an unreasonable number to request in a non-standalone
enviromment, it seemed more appropriate to request fewer. The results of
querying, both for a single user and 5 users, showed that no significant
variation appeared as a result of altering the number of cache buffers
available.

3.2.1.1.2 Space Definition

At table creation time, an ORACLF user may choose to accept the
default space allocation or may choose to alter the space definition to
suit the particular table. If a priori information is known about the
table, such as an approximation of the number of rows to be inserted into
the table, then the user may better determine the space required for the
table. An a priori knowledge of the fields to be indexed can also provide
much assistance in determining useful space allocations. While the default
specification may be acceptable for most applications, a test was conducted
to determine what impact tuning of the space definition might have on load
performance. A PMS-like data base was loaded twice, once using a variation
of the default space definition, and once using a space definition which
was based on 5,000 PMS headers being loaded, with indices on the
PRIMARY KEY, MID SID, and TIME fields. The two space definitions are given
below.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

Initial space definition: Initial Allocation - 25 pages
Increment - 25 pages Data
Max. No. of Increments - 10,000 Pages

% Free on Each Page - 10

Initial Allocation - 25 pages

Increment - 25 pages Index
Max. No. of Increments - 10,000 Pages

Redefined space definition: Initial Allocation - 1,600 pages
Increment - 300 pages Data
Max. No. of Increments - 6 Pages
% Free on Each Page - 10
initial Allocation - 600 pages
Increment - 100 pages Index
Max. No. of Increments - 6 Pages

A summary of the results of loading the data hase using each of the
space definitions defined above appears in the following tables.

ORACLE LOAD RESULTS

Space Average % Improvement Total
Definition { Insertion Rate in Average Connect Time

(Hdrs/Sec) Insertion Rate (Sec)

Initial 5.06 -—- 983.

Redefined 5.33 + 4.7 938.

ORACLE LOAD RESULTS

Space Totai ZPU Total Total
Definition| Time ’Scc) Direct 1/0's | Page Faults
Initial 667.40 10,898 26,596
Redefined 627,81 10,536 17,943

A 4.7% improvement in average inses .2n ruie was realized by altering
the space definition to the particular tat'- wWhile this improvement is
not dramatic, it serves to demonstrate that improvemen: may be observed by
redefining and refining the space definition.

3-35

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

3.2.1.1.3 (Clustering

One of the more important differences between ORACLE 3.0 and 2.3 was
the addition of clustering in Versiocn 3.0. Clustering can serve two
purposes. When performed on more than one table, it can place records from
the various tables physically close to one another according to the value
in the “"cluster key" field or fields. When table joins are performed un
that key field, the data to be joined is theoretically on the same block,
thus serving to hasten the join process.

When performed on one table, as in this testing, clustering can place
records with the same value of the “cluster key" physicaliy close to one
another. If a query is performed on that field, all rows may be retrieved
more quickly.

Clustered data exhibit certain characteristics - 1) each new value of
the "cluster key" is placed on a new ORACLE disk block, 2) an index is
created with each value of the "cluster key" stored once and with the index
pointing to the first occurrence of the value of the "cluster key" and, 3)
the clustered field (or fields) is stored once for the entire group of
records with an; one value.

Various tests were conducted to determine the affects of clustering
and to compare clustering with indexing. Each test employed the PMS
application with 5,000 header records.

In .“2 first set of tests, a PMS-like data base was loaded four
times. In the first, there were no indices and no clusters., In the
second, there were no clusters but there was an index on MID _SID. In the
third, there was a cluster on MID_SID but no indices, and in the last,
there was an index on MID SID and a cluster on MID_SID.

After each data base was loaded, the following query was performed
25 times (except for case 1 where no query was performed):

3-36

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SELECT * FROM HEADER WHERE MID SID =

Because there were 10 unique MID values and 3 unique SID values, or 30
unique combinations of MID and SID in the data base, each select solicited

approximately 167 responses. The results of loading and querying are given

in the summary tables below.

ORACLE LOAD RESULTS

Average |% Degradation | Total |Total|Total Total
Data Base Insertion in Average |[Connect| CPU |Direct | Page
Description Rate Insertion Rate| Time ([Time {I/0's Faults
(Hdrs/Sec) (Sec) |(Sec)
No Cluster,
No Indices 18.59 -—- 269.| 233. 19 3,956
No Cluster,
Index MID_SID 11.55 + 37.9 433, 360. 459 7,336
Cluster MIC_SID,
No Indices 3.10 + 83.3 1,615.(759.]54,639 | 38,303
Cluster MID SID,
Index MID _SID 3.04 + 83.6 1,644.| 767.]5%4,605 | 38,174
ORACLE QUERY RESULTS
Average | % Degradation Total [Total{Total Total
Data Base Response| in Average Connect| CPU [Direct | Page
Description Time Response Time Time |Time |I1/0's Faults
: (Sec) (Sec) {(Sec)
No Cluster,
Index MID_SID 6.8 .- 170, | 104.{ 3,960 7,535
Cluster MID_SID,
No Indices 9.3 + 36.7 232. | 201. 571 7,403
Cluster MID_SID,
Index MID_SID 9.6 + 41,2 239. 205+ R7Q 7,031
|] il {

The addition of a cluster seemed to have a severe impact on perform-

ance, both in loading and querying.

3-37

A close look at how ORACLE performs
clustering lended some insight into this phenomenon,

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

By issuing a query on one of the ORACLE system tables, it was deter-
mined that each CRACLE block (1 ORACLE block = 2 disk blocks) held 7 header
records. There were only 30 unique values for MID_SID, so approximately 24
ORACLE blocks were needed to hold the records associated with each unique
"cluster key" value. Because the input data records to be loaded were
ordered randomly according to the "cluster key" MID SID, ORACLE necessarily
performed an excessive number of block chains linking all of the blocks
associated with any particular value of MID_SID. Each time a new record
was added, the chain was traversed from the beginning to locate the first
available space to add the record. This is evidenced by the dramatic
increase in the number of direct 1/0 operations in the cluster loads.

The same type of behavior was exhibited in the query statistics.
Because one of the basic tenets behind clustering is speedy retrieval, the
results were particularly discouraging. However, this also can be
explained for this case. The query which was executed chose all of the
records with the selected value of MID SID. It must be remembered that
approximately 167 rows were retrieved in each select. Through discussions
with ORACLE Corporation (ORACLE vendor), it was determined that tiae method
currently being used in ORACLE retrieves the first row and notes that the
first row was the last one retrieved. When ORACLE proceeds to select the
next row, it checks to see which was the last one selected and knows to
retrieve the next row. However, the entire chain from the beginning to the
selected row must be traversed each time a new row is retrieved. If only a
small number of rows are to be retrieved, the prcblem is not a serious
one, However, in this case, where approximately 167 rows were retrieved
for each of 25 queries, the problem surfaced as a serious one.

Two possible solutions to the problem were suggested by ORACLE
Corporation personnel. First, it seemed important to select a "cluster
key" so that the duplication factor of that key was smaller than in the
first test. It is important, though, not to choose a key with too few
duplications, because each new key is placed in a new block and a small
duplication factor would resuit in much wasted space. In this case, for

3-38

BUSINESS AND TECHNOLOGICAL SYSTEMS, INc.

example, it would seem that since 7 headers can be placed in one bluck, a
key which would cause far fewer than 7 headers to be placed in a block
might be a bad choice,

A second possible solution suggested was to determine whether ordering
the input data according to the "cluster key" MID_SID would have an impact
on load performance.

The results of tests conducted using ORACLE Corporation's suggestions
are shown below. In the first table, the results of three 1nads are
shown. In the first, a cluster was created on the combination of tne MID_
SID field and the SDF field. There were 30 unique values for MID_SID and
four unique values for SDF, or 120 unique values for the combination. 1In
the second load, no cluster was created, but the same fields, MID_SID and
SDF, were indexed. In tk> third run, the same two fields were clustered
and in addition, indices were created for the PRIMARY KEY and TIME fields.

ORACLE LOAD RESULTS

Average |% Degradation| Total |Total|Total | Total

Jata Base Insertion | in Average |Connect| CPU |Direct| Page
Description Rete Insertion Time ({Time |I1/0's | Faults
(Hdrs/Sec) Rate (Sec) |(Sec)

Cluster MID_SID,
SOF, No Indices 6.28 --- 79€. | 436.|15,739} 17,928

No Cluster, Indices
on MID_SID, SOF 8.56 - 36.3 584, | 185.1 1,013| 9,509

B

Ciuster MID SID,
SGF, Indices on
PRIMARY KEY, TIME 3.17 + 49,5 1,578, | 813.]33,407} 34,719

In the first run, there were approximately 42 rows for each unique combina-
tion of the “cluster key" MID_SID and SDF. With 7 records per block,
approximately 6 blocks were needed to hold each “"cluster key" combination.

3-39

BUSINESS AND TECHNOLUGICAL SYSTEMS, INc.

The number of direct I/0's dropped siynificantly Trom 54,600 in the previ-
ous test to 15,700 in this test. Likewise, the CPU' time dropped dramat-
ically. The loading was still slower than loading with the indices craated
for the two fields, however. This should be expected though, because
ORACLE must build ar index for the "cluster key" in addition to clusteriing
the data. The third test was run to determine the kind of results which
could be exr:cted in a more realistic situation where other indices, such
as one on the PRIMARY_KEY, were necessary.

The query which was performed on the three data hases was:

SELECT * FROM HEADER WHERE MID_SID
AND SDF

——————
—————

The query was performed 25 times on each data bise, and the results
are given here.

ORACLE QUERY RESULTS

Average|% Degradation| Total |Total|Totail Tdtal

Data Base Response| in Average {Connect| CPU [Direct !Page
Description Time |[Response Time| Time |[Time !1/0's {Faults
(Sec) {Sec) }(Se<c)

Cluster MID SID, SDF
No Indices 1.4 --- 35. 30. 172.} 2,821.

No Cluster, Indices
on MID SID, SDF 3.5 + 150,0 88, 53. | 1.935.| 3,241.

Cluster MID_SID,
SOF, Indices on
PRIMARY KEY, TIME 1.4 ——— 35, 30. 171.1 2,616.

When the cluster key was chosen as being comprised of twe fields
instead of one, as before, the average response time was much faster than
by indexing. It should be noted that the results of this table should not
be compared directly to the results of the previous query table. In that
table, approximately 167 rows were retrieved in the average response time
given. In this table, approximately 42 rows were retrieved in the average

3-40

BUSINESs AND TECHNOLOGICIL SYSTove INC

response time given. The proper adjustments must be made for direct
comparison. The important point to be made is that clustering can out-
perform indexing under proper conditions, but can be a hindrance otherwise.

The purpose of the next test was to determine whether cluster load
performance could be improved by ordering the input according to the value
of the "cluster key." The table below shows the results of a load wh:re
the data was input randomly according to the "cluster key" MID_SID, and
where the data was presorteu by MID SID in as<ending order.

ORACLE LOAD RESULTS

Average |% Improvement| Total |Total | Total Total
Input Ordering| Insertion| in Average Connect| CPU Direct | Page
Rate Insertion Time |[Time 1/0's Faults
(Hdrs/Sec) Rate (Sec) [(Sec)
R-ndom 3.10 - 1,615. | 759. {54,639. | 38,303.
hecending by
MID_SID 11.31 + 264.8 442, | 390. 24, 5,656,

It can readily be seen that preordering of input data can have a
significant af.ect on load rates. While this may not always be a viable
opticn, the possibility of preordering should be considered.

It was of interest to deterr ne the affect, if any, of clustering on
the retrieval of records according to the value in the PRIMARY KEY field.

The query which was performed was:
SELECT * FROM HEADER WHERE PRIMARY KEY =

The query was periormed on 5%, or 250 records 1n the data base.

3-41

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Three scenarios were tested using this query. In the first, there was
no clustering, only an index on the PRIMARY KEY field. In the second run,
there was a cluster on MID_SID and an index on the PRIMARY KEY field. In
the final run, there was a cluster on MID_SID and SDF as well as an index
on the PRIMARY KEY. The results are shown here.

ORACLE QUERY RESULTS

Average |% Degradation| Total |TotaliTotal jTotal

Data Base Response| 1n Average {Connect| CPU |Direct|Page
Description Time {Response Time| Time |[Time |I/0's {Faults
(Sec) (Sec) |(Sec)

No Cluster, Index on

PRIMARY KEY .10 -—- 25. 16. 526.13,212.
Cluster MID SID,

Index on PRIMARY KEY .35 ~ 250.0 88. 40, |3,219./4,788.
Cluster MID SID, SDF,

Index on PRIMARY KEY| .16 + 60.0 40. | 22. [1,135.]3,847.

As can be seen here, clustering can have a significant impact on query
performance when the query is on a field other than the one defined in the
cluster, even if the field being queried on is indexed. Thru discussions
with an ORACLE Corporation representative, it was determined that an index
:reated un a field cannot be as efficient when the tabie that field resides
in is clustered, even if the cluster is on another field, as when no
cluster exists. While the index was still used in the above query to
locate the proper rows, the index pointed to the first row in the cluster
of rows where the desired row was located. The chain was then traversed
until the proper row was located. The reasor for this is that the
clustered field (or fields) is stored only once (at the beginning of the
cluster) for each unique value of that field (or fields). When a row is
retrieved, that field (or fields) must be retrieved in addition to the
remainder of the row. This is evident in the above table. The total
number of direct I/0 operations as well as the total CPU time in each run
reflects the amount of chaining existent in the data base.

3-42

BLSINESS AND TECHNOLOGICAL SYSTEMS, INC

It is evident from the testing presented in ‘s section that cluster-
ing can significantly impact data base performance. It is evident also
that caution must be used in defining a cluster so as to insure that the
impact is not such as to create a degradation instead of improvement in
performance.

3.2.1.1.4 Loading Alternatives (ODL)

ORACLE provides the user with a number of ways to load a data base.
One method is by the execution of the ORACLE “INSERT" command embedded in a
Host Language Interface (HLI) program. The FORTRAN program reads and
processes one record 2t a time. A second method of loading is the ORACLE
Data Loader, or ODL for short. In order to use the data loader, the input
data file must be in raw data (binary) form.

This testing focused on the PCDB application which is described in
Appendix Il1. Briefly, there were 5 tables - the TAPE table, FLE table (the
term FLE was used because FILE is an ORACLE reserved word), ITEM table, CAT
table, and ITEM DESCR table. There were 13,631 input data records. The
data base was loaded two times.

In the first load, data was inserted to the data base by use of the
HLI "INSERT" command. In the second load, the ODL was used. The 0ODL
program reads the user's ‘nput data, performs the mapping from raw data to
a data base teble, and then loads the data records into the data base
table. In this testing, the data was preprocessed to get it into raw data
form,

A summary of the results of the two methods of loading is given in the
following table, as reported in the VAX accounting log.

3-43

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

ORACLE LOAD RESULTS

Load Description| Average Total Total Total Total
insertion Connect CPU Direct Page
Rate Time Time 1/0's Faults
(Hdrs/Sec) {Sec) (Sec)
Use of “Insert" 4.68 2,914, 2,442, 12,225. 57,412,
oDL 4.46 3,059, 2,443, 19,421, 66,499,

There was very liitle difference in our test between the load results
of the two methods. If the input data is already in raw data form, the ODL
load is probably an easier, faster method to use because no FORTRAN inter-
face need be written. However, if the input data must be preprocessed in
order to use the ODL loader, then perhaps the first method would be
simpler. Another drawback to using the ODL loader is that the input data
must be able to map directly into a column of a table. An examplie of where
0DL could not be used is in the PMS applicaticn. The field MIG_SID is a
concatenation of the input data fields MID and SID.

While the CPU times of the two runs were almost identical, the larger
number of direct 1/0's and page faults contributed to the greater total
connect time in the ODL load. The total time difference of 2.5 minutes out
of 50 total minutes is still not very significant. Under different
circumstances (more complex data base desigrn or more records, for example),
one method could prove to be more superior to the other in load rates.

3.2.1.2 SEED DBMS System Parameters

Tests were made on a SEED data base to determine the effect of three
separate user controlled DBMS parameters on performance - journaling, an
alternate hashing technique, and buffering. In all tests, the data base
structure was the same as that described in previous sections and shown
below. The tests were performed using SEED Version B.11.9.

3-44

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED Schema
R1_MID R2_TIME R3_SDF
S1 4 52 6 / S35
S1_6 $3 6
R4_SID RS_UIC
S4_6 S
R6_PKEY
S6_7
R7_COMMENT

3.2.1.2.1 Journaling

Because in most real aoplications, some form of journaling is neces-
sary, the first group of tests were made to determine the impact of
journaling on SEED DBMS loading peformance. 1In all tests, 5,000 PMS-like
header records were loadei,

Various types of journaling are available to SEED users. The first,
TRNSCT, allows definition of a transaction containing one or more data base
operations, which through use of this command, can be made permanent or
nullified. The command takes the form of a FORTRAN subroutine call. Other
journal modes which are available are: integrity (recovery but no roll
forward or roll backward), roll forward, and roll backward. 1In integrity
mode, a single data base update which did not terminate normally may be
recovered. In roll forward, "after-images" are written to a file as
updates are being performed, so that in the case of a system failure, the
user may take a backup version of the data base and roll forward to a point
prior to the crach which destroyed the data base. In roll backward mode,

3-45

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

while the user may still roll the data base forward as described above,
"before images" are written to a file, so that the data base may also be
rolled back to a previous state. This is particularly useful to correct
user errors in the data base.

To get a sampling of the effect of various modes of journaling on load
rates, tests were made comparing the results of no journaling, TRNSCT, and
roll backward. These three modes were chosen because they represent no
journaling capability, a simple type of journaling, and the most complex
form of journaling which SEED provides. The results are shown in the table
below.

SEED LOAD RESULTS

Journal Mode Average % Degradation
Insertion Rate| in Average
(Hdrs/Sec) |Insertion Rate

None 6.2 ———
TRNSCT after

every record 6.1 + 1.6
TRNSCT after

every burst 6.2 ——-
Roll Backward 2.5 + 59,7

wWhereas the use of TRNSCT does not seem to have much affect on load
rates, the use of journal mode roll backward severely impacts performance.

3.2.1.2.2 Aiternate Hashing Technique

The user has a choice of hashing algorithms to use to optimize place-
ment of records in the data base according to the value of a "key" vari-
able. The SEED DBMS supplies two such algorittims and also gives the user
the option of supplying up to 7 other algorithms. The first SEED supplied
algorithm (DBHSHO) should optimize placement of "integer" type key vari-
ables (or any variable < 4 bytes long), while the second algorithm (DBHSH2)
should optimize placement of "character" type key variables longer than 4

3-46

ORIGHAL Fle - B
BUSINESS AND TECHNOLOGICAL SYSTEMS, INC OF POOR QUALIY

bytes. In the PMS application, the key variable PKEY, is a 10 byte
character string. In this group of tests, a data base was loaded two
times, once using DBHSHO and once using DBHSH2. The graph below shows
that, for this application, there did not seem to be a significant
difference between DBHSHO and DBHSH2 in the placement of data within the
data base.

LRGSR S0 I 1L I A B A BRI OO S5 Y I B (EFF e s it R - ey S e
. i RN FESEFOE O N i
SEED : - va
| 1 Alternate Hashing Algorithms g B N L i
354 X — DBHSHO
o 1 -~ DBHSH?

: i Loy N A

R 3 ﬁ\~f‘ff’*'u e

........

L ! A] : :“‘}.: X , : N R : [
5-10 15-20 25-30 35-40 45-50 55-60 65-70 75-80 éS—QC’ 95-100
E““ § b : i ' 1 . B : . | v i .

. C, Percept Furn [T |
LT e e

3.2.1.2.3 Buffering
One of the features that the SEED DBMS employs is the ability of the

user to manipulate buffering at run time. The purpose of the group of
tests in this section was to evaluate load performance under three differ-
ent buffering strategies. In the first strategy, 50 buffers were requcst-
ed. All 50 buffers were to be left unwritten (this gains efficiency but

3-47

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

exposes the program to system crashes). All buffers operated in "least
recently used" mode as opposed to "adaptive" mode. In LRU (least recently
used) buffering, the page that was least recently accessed is replaced by
the new page in core. In acdaptive buffering, a count is kept of the number
of times a page has been accessed, and the page with the least number of
accesses is replaced.

In the second buffering strategy, 100 buffers were requested, all to
be left unwritten, and all to act in LRU mode.

In the final buffering strategy, 50 buffers were requested, all to be
left unwritten, but 39 to act in LRU mode and 11 to act in adaptive mode.
This hybrid loosely results in the least accessed adaptive buffers being
used to hold the least recently used LRU buffer into which the new page
will be read.

A comparison of the results of the three buffering strategies is shown
below.

SEED LOAD RESULTS

Buffer Strategy Average % Degradation
(number of buffers,|Insertion Rate| in Average
number to be left (Hdrs/Sec) Insertion
unwritten, number Rate

in LRU mode)

(50,50,50) 6.2 -
(100,100, 100) 8.3 - 33.9
(50,50,39) 4.9 + 21.0

While the results for the second strategy (100,100,100) are far better
than the others, in a realistic atmosphere (i.e. non-standalone), it would
probably be unreasonable to request such a large number of buffers. The
default number of buffers is 4. A buffer is defined as the size of the
largest page in the data base.

3-48

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The primary conclusion to be drawn from this study is that buffer
manipulation can have a significant impact on performance and by altering
the parameters, an optimal scenario can be reached for a particular appli-
cation.

3.2.1.3 INGRES DBMS System Parameters

The tests which were performed using the INGRES DBMS were desicu«d to
measure the effect of secondary indices, storage structure, journaling, &-d
loading alternatives on the performance of the DBMS. In all testing, the
PCDB application was used. This application is described in detail in
Appendix IlI. The various methods of storing data are Jiscussed in Section
3.2.1.3.2.

3.2.1.3.1 Secondary Indices

The primary key is the column, or columns, .f the table which
determine where the rows of the table are stored. For example, if the
storage structure of the table is heap, there is no primary key. Each row
is stored in the data base in the next available location. There is no
ordering of rows. When the storage structure is defined as hash, a primary
key musi be defined. It is the value in this column, or columns, which
determines the storage location. In an "ISAM" structured table, the rows
are actually stored in sorted order according to the values in the primary
key column (or columns).

Because queries are performed which cannot take advantage of the
storage structure of the table (i.e. the where clause contains a field not
in the primary key), INGRES offers another solution. By creating secondary
indices on fields other than the primary key fields, query optimization can
be enhanced.

The purpose of the tests in this section was to measure the impa t of
the presence or lack of secondary indices on query response time. These
tests were run under INGRES Version 1.3. Ir each test, the query thct was
executed was:

3-49

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

RANGE OF F IS FILE, C IS CAT
RETRIEVE (C.CAT, C.CATEGORY, C.FUNCTION, F.FILENUM, F.FLSTART,

F.FLSTOP, F.FLFIRSTORB, F.FLLASTORB, F.FLLEN) WHERE
F.TAPEID=C.TAPEID AND

(C.FILENUM=F ,FILENUM OR C.FILENUM= 0) AND

F.NUMITEMS=0 AND

C.CAT = 'OZONE' AND

(F.FLSTART<="'710401000000"' AND F.FLSTOP>='700801000000') AND
F.TAPEID="DPFL*"

Each time the query was performed on the data base, 2,796 rows were
retrieved out of a total of 13,651 records in the entire data base.

The table structures were defined as follows:

Table TAPE was ‘'hash'ed on TAPEID

Table FILE was 'ISAM'ad on TAPEID, FILENUM

Table ITEM was ‘hash'ed on TAPEID, FILENUM, ITEM
Table CAT was 'hash'ed on TAPEID, FILENUM, ITEM, CAT
Tabie ITEM DESCR was 'ha.h'ed on ITEM

The table beiow shows the results of the tests where various secondary
indices were created. For each run, the field(s) with a secondary index is
shown, along with the index type (hash or ISAM) for that field. The
statistics were obtained from the VAX account file.

3-50

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES QUERY RESULTS

Job|Secondary Index Average (% Improvement| Total { Totai| Total
Incex Structure |[Response| in Average |Connect| CPU | Direct
Field Time Response Time| Time Time | I/0's

(Sec) (Sec) | (Sec)

1 [None --- .053 -—- 148, | 92.01} 2,189.
2 |CAT Hash .055 - 3.8 153. | 91.79¢ 2,197.
3 [FLSTART ISAM .054 - 1.9 151, | 91.70}) 2,195,
4 |FLSTOP ISAM .054 - 1.9 150. | 92.56| 2,195,
5 |CAT,

FLSTART Hash, 1SAM .053 -—- 149, | 92.09| 2,199,
6 |CAT,

FLSTOP Hash, ISAM .054 - 1.9 150. | 92.35] 2,199.
7 |FLSTART,

FLSTOP ISAM, ISAM .054 - 1.9 150, | 92.02] 2,195,
8 |CAT,FLSTART, |Hash, ISAM,

FLSTOP ISAM .054 - 1.9 150, | 92.30} 2,200,

There is a 4% maximum difference in average response time and less
than 1% difference in total CPU time.

The query invoived only the FILE and CAT tables. The FILE table
consisted of 13,501 rows and the CAT table consisted of 55 rows. Two
explanations may be given as to why the presence of secondary indices had
little effect on the query rates., First, the query joined the CAT and FILE
table on TAPEID. Because the CAT table was small, and the value 'OZONE'
was specified in the where clause of the query, the INGRES DBMS could take
advantage of the size of the table and quickly locate the rows in the CAT
table which satisfied the query. Because the FILE table was 'ISAM'ed on
TAPEID and FILENUM, t:2 files for any particular TAPEID were arranged in
ascending order by TAPEID and, therefore, only a small part of the FILE
table was recad for each join with a TAPEID in the CAT table.

3-51

BusiVess AND TECHNOLOGICAL SYSTEMS, IvC.

Second, a secondary index is generally more efficient if the total
number of rows retrieved by the query is smaller than the number of pages
in the primary table. The query performed in this testing retrieved 2,796
rows while the FILE table occupied only 1,126 pages, of which only a small
number were read (because of the ISAM structure of the (ILE table).

While the variation in total number of direct I/0 operations is small,
there were fewer for the run where no secondary indices were present than

for the others.

3.2.1.3.2 HEAP vs, HASH vs, ISAM

The three basic modes of storage availabla to the INGRES user are
heap, hash, and ISAM. In heap structure, which is the default storage
structure, there is no structure to the data. New rows are placed at the
end of the table, so the order is random. Any time a query is executed
against & table, the entire table must be searched. Hash structure stores
each row at an address determined by the value in a column, or columns, of
the row. When a new row is added te a table, INGRES calculatas its address
hbased on the value in this key column, or columns. Queries involving exact
matches on the key field are greatly accelerated using the hash structure.
ISAM (or Indexed Sequential ~ -~ess Method) arranges rows in ascerding order
of key value and then subdivides them into pages. Then the largest key
value on each page is colliected, and these are sorted in a tree structured
index. Access to an ISAM table is achieved by searching the index for the
correct page and then accessing the page. Retrieval involving a range of
values is particularly efficient using the ISAM method, as are exact
matches.,

A test was run to measure the effect of altering table structure on
query response times. The runs in this test performed the same query that
w3s described in the previous section and were run under INGRES Version
1.3. There were no secondary indizes present in these runs. In the first
run, both the FILE table and CAT table were 'heap' structure, that is, no
structure at all. In the second run, both the FILE table and CAT table

3-52

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

were 'hash’ structure - the FILE table being 'hash'ed on TAPEID and FILENUM
and the CAT table being 'hash'ed on TAPEID, FILENUM, ITEM, and CA1. 1In the
third run, both tables were 'ISAM' struc*ure, and in the last run, the FILE
table was 'ISAM' structure and the CAT table was ‘'hach' structure,

The results of querying the data base for each of these situationc is
shown below, as obtained from the VAX accounting log.

INGRES QUERY RESULTS

Table Structure Average | % Improvement Total Total Total
Respcnse}l 1in Average Connect CPU Direct
Time Response Time Time 1/0's
(Sec) Time (Sec) (Sec)

FILE*, car’ - heap .064 --- 178. 102.14 3,141,

FILE*, CATT - hash .079 - 23.4 221. 111.78 4,721,

FILE*, CATT - ISAM .053 +17.2 149, 92.62 2,182,

FILE* - ISAM

CATT - hash .053 + 17.2 148, 92.01 2,189,

* FILE - primary key on concatenation of TAPEID and FILENUM
t+ CAT - primary key on concatenation of TAPEID, FILENUM, ITEM and CAT

Because th- CAT table had only 55 records, the variation in structure
of that table did not contribute significantly to the large variation in
total connect time for the 4 queries. The structure of the FILE table,
however, was responsible for these large variations. When the FILE table
was “hash'ed, for each of the 2,796 rows which were retrieved, the value of
the hash key was determined and the row located. The total number of
direct 1/0 operations c¢f 4,721 reflects the fact that the FILE rows for
each TAPEID were spread throughout the data base. When the FILE table was
declared to be ‘'ISAM' structure, the FILE rows for each tape were Tocatad
physically close to one another in ascending order of FILENUM. For each
TAPEID, far fewer direct [/0 operations were necessary to retrieve the
2,796 rows that satisfied the query. The faster retrieval was due not only

3-53

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

to the ordering of FILE rows. but also to the fact that the entire table
did not have to be searched, but only a small portion. The results of the
query where no structure was placed on the FILE table -how that this was
still faster than ‘hash'ing. This was attributable %o the FILE table
occupying 1,126 pages and the query retrieving 2,796 rows. There were less
direct I/0 operations than when the FILE table was ‘hash'ed, showing
“.-ther that when the FILE table was hashed, the records for each TAPEID
were spread throughout the data base.

Because of the structure of the data being loaded into *ne data base,
the FILE records for eacn TAFEID were read and loaded sequentially, even
though the FILE ti¢ble was declared 'heap'. The difference between this and
the run where FILE was declared 'ISAM', was that when the table is 'heap'
the entire table must be searched whereas when the table s 'ISAM', only
part of the table is searched.

3.2.1.3.3 Journaling

In the 7ina) test impiomented to measure the affect of INGRES DBMS
parameters cn performance, a PCDB data base (see Appendix 1:' was loaded
twice - once with no journaling and once with the journaling capability
enabled. This test was conducted using INGRES Version 1.4,

The results of both runs are shown in the following table, with
results from the VAX accounting log. In each run, the data base wa. loaied
into 'heap' tebles using the copy command.

INGRES LOAD RESULTS

{bescription Average |% Degradation' jotal {Total |Total | Total [!Total
Insertinn | in Average |[Connect| CPU |[Direci Buffered| Page
Rate Insertion Tine {Time ({1/0's 1/0's {Faults
(Hdrs/Sec) Rate (Sec) |(Sec) '
No
Journa]ing 3109 - 427. 327.35 3,121. 1'451. 570.
Liournaling 26.4 +17.2 517, [360.32 B'IZbilA‘°’114' 576.

3-54

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

When the journai mode is enabled, a copy is kept of every transaction
on the data base, so that the data basc may bLe recovered after a failure or
so that an audit may be made of transactions to the data base. While there
was a 17% reduction in load performance when journaling was enabled, in a
practical situation, journaling is probably necessary to insure the
integrity of the data base.

3.2.1.3.4 Loading A'*ernatives

The INGRES DBMS currently offers three methods of loading a data
base. Each method is discussed briefly here.

The "append" command loads data into the data base one record at a
time or copies data from one table to another. By adding the word "repeat"
to the front of the command, the append statement is compiled only the
first time it is executed, and then saved for subsequent executions. The
second method of loading a data base is by using the copy command, which
copies data from a VAX VMS file into a tabie. With both of these methods,
it is best to load the data without any structure, and then modify the
structure appropriately. In the final method of loading, the data is
loaded to & temporary table (without structure) using the copy command, and
then this table is "repeat append"ed to the permanent table (with
structure).

Using INGRES Version 1.3, several tests were conducted which attempted
to compare the various methods of loading. In each test, a PCDB like
application was adopted. In the PCDB application, five tables were present
- a tape table, a file table, an item table, a cat table and an item
description table. (This application is further explained in Appendix
II). A total of 13,631 inserts were made into the data base in the “irst
test. The test was run to compare the two methods of loading, copy ard
repeat append, on a heap structured data base. The results of the loads
are presented below as reported in the VAX accounting file.

3-55

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES LOAD RESULTS

Average % Degradation Total Total

Type of Load | Insertion over Connect cpu
Rate “Copy" Time Time
(Hdrs/Sec) (Sec) (Sec)
Copy 31.6 -—- 431. 324.
Repeat Append 3.3 + 89.6 4,105. 1,716,

There was a large variation between the two runs in total number of
direct 1/0's, buffered 1/0's and page faults. These statistics are given
below (from the VAX accounting log).

INGRES LOAD RESULTS

Type of Load |Total Direct 1/0's|Total Buffered 1/0's{Total Page Faults

Copy 3,122 1,451 514
Repeat Append 30,511 97,116 4,340

While the use of copy may not always be a viable approach for the
user, its use is far superior when lcading large amounts of data into a
data base.

The second test was designed to compare loading a data base where all
five tables have been hash structured using the copy command, against
loading temporary tables with no structure {heap) and then appending the
temporary tables to permenent tables defined as hash structure (See
Appendix II). This test was conducted using INGRES Version 1.3. In this
test, 2,000 records were loaded. Again, the statistics reported were
obtained from the VAX accounting file.

3-56

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

INGRES LOAD RESULTS

Average Total Total
Type of load Insertion Rate Connect Time CPU Time
{Hdrs/Sec) (Sec) (Sec)
Copy into hash
structured tables 3.6 549, 193.
Copy into heap
tables 69. 51.
Append to hash
structured tables 302. 105.
Total 5.4 371. 156.

While the CPU time difference is minimal betweer the two methods (less
than 40 seconds) the total connect time difference is somewhat larger (178

sec.). A look at the total number of direct 1/0's is helpful (VAX
accounting file statistic).

There are close to twice as many direct I/0's on the run where the data is

INGRES LOAD

RESULTS

Type of Load

Total Direct 1/0°'s

Copy into hash

structured tables 29,143.
Copy into heap

tables 521.
Append to hash

structured tables 15,305.
Total 15,826.

being copied directly into a hash structured table.

3-57

BUSINESS .WVD TECHNOLOGICAL SSTENS, INC

3.2.2 Computer Operating System Parameters

One of the computer system manager's responsibilities is to set up
"profiles” on system parameters that affect all users and "profiles" for
individual users which may vary according to a particular user's knowledge
of the system and needs on that system.

One aspect of the computer operating system which is important to
understanding and evaluating the results of all testing is test repeat-
ability. It is important to be able to repeat any test under conditions
that are as similar as possible to the original test. To this end, a
PMS-like data base was loaded several times (5,000 records each time), with
the operating system being "re-booted” between each run.

Another such parameter in a “"profile" may be the working set size (the
maximum number of pages a user's process may have). In an effort to erase
any effect a large number of page faults might have on DBMS performance,
the default working set size was increased in this testing, from 512 to
1,500 pages. The same PMS-like application was used in this testing to
load a data base with 5,000 header records.

Finally, tests were made to determine if disk allocation of data base
related software and files would seriously impact performance. The data
base files, loading software, data to be loaded, and data base management
system software were assigned in varying configurations on the available
disk units. Tests were made which loaded the same data into an identically
defined PMS data base each time but where the lccation of these four
important components was reconfigured.

3.2.2.1 Impact of VAX/VMS Behavior on DBMS Performance

ORACLE Version 2.3.2 Results
In an effort to determine what VAX/VMS system variability contributes

to DBMS performance, an examination of results obtained in other testing
was made. In that testing, one or more repetitions of the same test had
been performed under circumstances which would appear to be identical. The

3-58

BUSINESS VD TECHNOLOGICAL SYSTEMS, INC.

same ORACLE system was used, the same HLI FORTRAN software was executed,
the same input data was used, and all tests were conducted in standalone
mode. The data bases had all been reinitialized prior tc starting the
tests. The major unknown and uncontrolled ~iable in the tests was the
state of the VAX/VMS system software and related page maps and buffers.

The structure of the HEADER table is shown here:

HEADER Table

KEY*|SID|MID*|SSCIPLP{SDF { SHID|STEC TIMEiPLS SECHDR {UIC | COMMENT
i
—

* Indexed Field

A comparison of the results of six pairs of otherwise identical runs
demonstrate that variability in DBMS performance does exist that can be
attributed to the VAX/VMS system independent of the UBMS. Below is a table
summarizing the percent difference in each of the six pairs of "identical"
tests for connect time, CPU time, direct 1/0 operations, and page faults.
The percentages in the tapie reflect the relative difference in performance
within an identical pair of runs,

ORACLE PERCENTAGE VARIATION IN LOAD RESULTS

Percentage Variation
Pair{ Process Connect Time| CPU Time IDirect I1/0's|Page Faults

1 Host Process 8 3 0 6

Detached Process 8 0 i 0

2 Host Process 8 6 0 0

Detached Process 8 1 0 0

3 Host Process 1 2 0 Y

Detached Process 1 0 0 0

4 Host Process 1 1 0 4

Detached Process 2 1 0 0

5 Host Process 3 3 0 0

Detached Process 2 1 0 2

6 Host Proucess 2 1 0 11
De

tached Process 2 2 0 23

3-59

BUSINESS AND TECHNOLOGICAL SYSTEMS. INC

The only constant between the pairs appears to be the direct 1/0
statistic. Connect time for both the FORTRAN software interfacing with the
DBMS (Host Process) and the ORACLE detached process varies from one to
eight percent. In only two cases was the CPU time constant. The only
aspect of the DBMS that could contribute to the observed variability fs the
status of the data base files after reinitialization. These files may be
in different states which would require different processing during the
tests. The magnitude of this type of variation would probably be small so
the primary explanation is attributed to the inherent variability present
in a virtual memory operating system.

A difference in performance was noted between the loading of a data
base which had been freshly created versus the same one after it had been
reinitializea and reloaded with identical data. Below, the results of two
pairs of tests are summarized in the same format as the previous table.
Within each pair, the only difference in the test setup was that in one the
data base was created new prior to loading while in the second the data
base wa: reinitialized. In both pairs a significant increase in connect
time was observed in the reinitialized data base load. The difference was
15% in both cases, which is nearly twice the maximum difference in connect
time observed in the previous table. This indicates that the observed
difference is attributable to more than simply system variation,.

CRACLE PERCENTAGE VARIATION IN LOAD RESULTS

Pair Process Percentage Variation

Connect Timej CPU Time |Direct I/0 jPage Faults

1 Host Process 15 3 0 13
Detached Process 15 0 1 0
2 Host Process 15 2 0 6
Detached Process 15 1 0] 0

3-60

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

Apparently, after reinitialization the DBMS is less efficient than
after the data base is created fresh. These results suggest that some
fragmentation of space or similar degradation occurs when the data base is
reinitialized, thus adding some overhead to the loading process when
repeated.

SEED Version B.11.9 Results

The testing in this section was performed on the same data base schema
that has been described in previous sections and is shown again here. In
all tests, 5,000 PMS-like headers were loaded.

SEED Schema
RL_MID R2_TIME R3_SDF
S1.4 /\ s2 6 / $3 5
7 s16 " s36
R4_SID R5 UIC
—\ // /
T~ 346 $5 6
\‘—\\ /
~ 4 y 4
T~ Re PREY fa
$6 7
\
R7_COMMENT

A group of tests were made to show the variability that can occur in
load rates when the same data base i, loaded more than one time. In these
tests, the data base was redefined for each run, and the computer was
"re-booted" for each run. The results of loacing the same data base four
times are shown below.

3-61

BUSINESS AND TECHNOLCGICAL SYSTEMS, INC.

SEED LOAD RESULTS

Job Pverage |% Deyradation Total Total
Number|Insertion in Average Connect | CPU Total Total
Rate Insertion Time Time Direct Page
(Hdi's/Sec) Rate (Sec) (Sec) 1/0's Faults
1 6.17 -——- 810. 435, 12,643. 15,086.
2 6.42 - 4,1 779. 437, 12,645, 15,882,
3 6.40 - 3.7 781, 439, 12,647.] 15,306.
4 6.28 - 1.8 796, 436, 12,645.1 15,158,

There is about a 2-4% difference in average insertion rate and less
than 1% difference in total CPU time. While the number of direct I/0's was
almost identical for all runs, the number of page faults was varied.

3.2.2.2 MWorking Set Size
ORACLE Version 3.0 Resuilts

A test was performed to attempt to assess the impact of working set
size on performance of a data base load. The working set is defined as the
set of pages in memory to which a process can refer without incurring a
page fault. In this test, 5,000 PMS-1ike headers were loaded into a data
base two times. In the first run, the working set size was 512 pages and
in the second, the working set size was 1,500 pages. The PMS header table
is shown here.

HEADER Table

PRIMARY_KEY*|MID SID*|TIME*{UIC|SuF |MESSAGE [HEADER

* Indexed Field

3-62

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The results of the 2 loads are given in the following table.

ORACLE LOAD RESULTS

Working Set Average % Improvement
Size (Pages) Insertion Rate in Average
(Hdrs/Sec) Insertion Rate
512 5.20 ——
1,500 5.23 + .6

As can be seen in the results, the increase in working set size did not
impact the performance of the load significantly. A glance at the peak
working set size revealed that when the maximum working set size was 512,
the peak working set size was 512. In other words, the process needed all
512 pages. When the maximum working set size was increased to 1,500 pages,
the peak working set size increased to only 549 pages. Even though a large
number of pages were available, the process only needed 549 pages.
Therefore, no drastic improvement in performance was seen. One explanation
for this might be that because ORACLE creates detached processes, the pages
needed are divided up among the processes, so that even though the total
may be large, the number of pages needed by each detached process is
relatively smali.

SEED Version B8.11.S Kesults

In an effort to assess the impact of working set size on performance
and also to try to minimize the variance in number of page faults between
runs, the working set size was increased from 512 to 1,500 pages. The
schema that was used was identical to that described in Section 3.2.2.1.
The results of loading two PMS-1ike data bases under these conditions (in

3-63

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

addition to the conditions stated for the previous testing) are shown
below. These tests were run in a standalone environment. These results
can be compared directly to the results in Section 3.2.2.1, where 4 jobs
were run to load the same data base. However, in those runs, the working
set size was 512 pages. The results of those four runs have been averaged
and also appear in the table below.

SEED LOAD RESULTS

Working Total Total Total Total
Set Size | Connect Time | CPU Time |Direct I/0's|Page Faults
(Pages) (Sec) (Sec)

512 792. 437. 12,645, 15,358.

1,500 757. 423. 12,652. 1.

1,500 764, 427. 12,644, 1.

By increasing the working set size, the number of page faults stabil-
jzed at a very low number. The affect this had on total connect time was
to lower it by about 4%. The variation in total connect (and total CPU)
time between runs was lowered to about 1%.

These results show that while the large working set size used in this
testing may be impractical under normal conditions, it can have a signifi-
cant impact on data base performance. They also serve to demonstrate the
variability inherent in the DEC virtual operating system.

3.2.2.3 Disk Allocation
QRACLE Version 2.3.2 Results

A variety of components (both hardware and software in nature) are
present when the ORACLE DBMS is in use. The amount of control over these
components and how they are confiqured certainly varies depending on the
host computer's intended usage and the degree of importance of the data
base application. The configuration of the software components and the

3-64

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

data they access may be more under the control of the DBA or the data base
user community. To ascertain what, if any, variability in DBMS performance
could be found due to configuration, a set of tests were made which confin-
ed their investigation to the software components and data accessed.

At the time these tests were devised and conducted, the hardware con-
figuration included two DEC RP0O6 (176 megabyte) disk drives which were
configured on the same mass bus adapter. The components relevant to the
testing included the WMS system software, the ORACLE "kernel” software, the
FORTRAN load routine, the ORACLE data base files, and the input data file
(PMS-1ike data to be loaded into the data base). Of these, the system
software and data base files could not be varied. The system software was
fixed on the system disk, designated DBAO, while the data base files had to
reside on DBAl because of space limitations on DBAG, The remaining three
components (ORACLE "kernel" software, FORTRAN load software, and the input
data file) were configured in various combinations after which a load of
5,000 headers into a PMS-like data base would be performed using the
following table makeup:

HEADER Table

KEY*|SID|MID*{SSC|PLP|SDF|SHID|SIEC|{TIME|PLS|SECHDR|UIC|COMMENT

* Indexed Field

The loads were all performed in standalone mode to eliminate the uncon-
trolled influence of other users. The data base was always reinitialized
before the loads were made. The table below summarizes the results of each
load. Tne FORTRAN load routine and the ORACLE detached process have been
reported separately for closer scrutiny. Statistics include total connect
time, CPU time, direct 1/0 operations and page faults as shown in the VAX
account log. Probably the most relevant statistic is the total connect
time since it will reflect the relative efficiencies or deficiencies
observed in each configuration, Most of the configurations were tested a
second time to see how much variability would exist.

3-65

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORACLE LOAD RESULTS

Higher Sum Sum Sum % Degradation
Component Job Total Total [Total Total over
Placement No. |Connect Time|CPU Time|Direct | Page Best Results
(Sec) (Sec) 1/0's | Faults
CRACLE Kernel| 1 1,388, 799.20 | 8,426 | 6,894 -—
s/w-DBAQ
Input Data
File-DBAl 2 1,418, 816.16 | 8,454 | 6,493 + 2.2
FORTRAN Load
s/w-DBAl
-DBAO 1 1,407, 808.13 | 8,426 | 7,268 + 1.4
-DBAO
-DBAO 2 1,421, 807.89 | 8,426 | 7,861 + 2.4
-DBAO
-DBAO 1 1,450, 812.19 | 8,405 | 7,557 + 4.5
-DBA1
-DBA1
-DBAO 1 1,557, 808.13 | 8,405 | 6,947 + 12.2
-DBA1
-DBA1 1 1,562, 815.96 | 8,426 | 5,389 + 12.5
-DBA1
-DBAl 2 1,541. 808.88 | 8,438 | 6,190 + 11.0
-DBAO 1 1,746. 821.10 | 8,404 | 6,740 + 25.8
-DBA1
-DBAO 2 1,618, 809.59 | 8,403 | 6,722 + 16.6

The results display a great deal of variability even between

repetitions of the same configuration.

primarily to the VAX/VMS operating system.

difficult to draw definitive conclusions from the observed results.

This variability is attributed

Because of this, it is more

The

most efficient configuration observed in these tests appears to be the
first one in the above table where the input data file and FORTRAN load
software were located on DBAl and the ORACLE Kernel software was on DBAO.

3-66

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

This is followed closely by a configuration with all three components on
DBAO and then by a configuration with the FORTRAN software on DBAl and the
other two components on DBAO. The worst results were apparent in the con-
figuration with the input data file on DBAl and the other two cumponents on
DBAO, There is a 25% increase in connect time between the best observed
results and the worst. Why such a difference exists is not readily
apparent. The only difference between the best and worst case configura-
tions is in the FORTRAN load software, where it resides on DBAl in the best
case and on DBAD in the worst, This does not seem to warrant such a
discrepancy in performance. Further analysis of the results shouws slightly
higher CPU times in the worst case and similar direct 1/0's and page
faults.

The variability between tests with similar configurations indicates
that the impact of the VAX/VMS system software is significant and taints
the conclusions that can be made between results of different configura-
tions. It is worthy to note that the two disk arives were on the same mass
bus adapter and must share the same communication "pipeline". Additional
testing in the area of component location may be desirable when more drives
are available and/or when multiple mass bus adapters are present.

SFED Version B.11.9 Results

In the testing performed in this section, the placement of various
components of the load process was altered in an effort to assess the
impact of actual position within the system on DBMS performance. In this
testing, the schema was identical to that described previously and in
Appendix [. Two RP06 disk drives were available - DBAQO and DBAl, They
were both configured on the same mass bus adapter. In all testing, the
actual data base and DBMS software resided on DBAl, The placement of the
loading software and data to be loaded was varied. Each test was repeated
at least one time. A1l results are shown below, with results obtained from
the VAX accounting file.

3-67

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED LOAD RESULTS

Total Total Total Total
Component Placement Job; Connect CPU Direct }Page Faults
No.| Time Tine 1/0's
(Sec) (Sec)
Input Data File - DBAl 1 8l2. 452, 12,889, 19,995,
2 833. 450, 12,889, 20,110.
FORTRAN Load s/w ~ DBAO | 3 846. 453, 12,889. 19,977.
Input Data File - DBAOD 1 809, 450, 12,890. 19,723,
2 822, 460. 12,889, 16,258,
FORTRAN Load s/w ~ DBAO
Input Data File - DBAl 1 815. 454, 12,889. 16,472,
2 804. 451, 12,889, i9,662.
FORTRAN Load s/w - DBA1l
Input Data File - DBAO 1 820. 451, 12,£89. 19,678,
2 810. 450, 12,889, 19,375.
FORTRAN Load s/w - DBA1l

The maximum difference in total CPU time between all runs is 10

seconds or about 2%.

The maximum difference in total connect time is aboul

5%. It appears that when only two disks are available and both are on the

same mass bus adapter, the placement of the various load components on

those disks should not be a3 serious consideration. Perhaps {f more disk
drives were available, placement would be more important and have a more
significant impact on p:~formaice. This might be especially true if dif-
ferent areas of the SEED data base could be placed on different disks. It
is also worth noting that the VAX system software was resident on disk DBAO
during these tests and may contend with the DBMS p~ncessing for 1/0 tc the

device,

3-68

BUSINESS 4vD TECHNOLOGICAL SYSTEMS, INC

4.0 SUPPLEMENTAL TESTING

In addition to the testing de<cribed in Sections 2 and 3, additional
variations were made on the basic data base designs. Many of these
variations were chosen to provide feedback to the PMS project team for
pursuing their design. As different DBMSs offer different alternatives to
the user, a direct comparison between tests run under one DBMS and another
may not always e applicable. Any testing described in this section which
is related to that done in either Section 2 or 3 will refer back to the
appropriate section for cross reference. All testing performed in this
section was conducted in a standalone environment.

In addition to the PMS-like application being used as a testbed in
this and other sections of the report, testing in this section also
includes the use of the PCDB application which is described in Appendix
1I. Some of the differences between the applications which contributed to
the testing of both were 1) data base size, 2) complexity of design, and 3)
major requirement (project goa!) of the data base.

For most of the testing of the PMS-1like application, the data base
contained 5,000 records. The data base design was relatively simple and
the main goa! was to 10ad 7 records per second.

On the other hand, the PCDB data base design was more complex and the
agata base contained 13,631 records. The main requirements of the PCDB data

base was acceptable query response times.

4,1 Alternutive Data Base Designs

The impact on performance of alternative cata base designs is of
significance to all DBMS users. This sectiorn provides additional
information to that included earlier in Section 2. The results preserted
in this section lend some insight to F. . data base design ca. be "tuned" to
optimize nerformance for a perticula- _.e 'a base application.

4-1

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

4,1.1 ORACLE Version 2.3.1
The goal of some initial testing done with ORACLE was to determine how
a PMS data base could be designed that met both the data management needs

as well as the desired performance goals.

4,1.1.1 Lload Performance - Prototype Design

A prototype design was evolved by the PMS project team. It is
composed of a single table described in Appendix I and is pictorially
summarized below:

HEADER Table

KEY*|SIDO*|MID*|SSCIPLP}SDF* | SHID| SIEC| TIME*|PLS | SECHDR [UIC* | COMMENT

® Indexed Field

Two test loads were performed which loaded empty versions .f the above
table with 10,000 and 42,000 rows, respectively. The UIC and COMMENT
fields are ircluded for user created packets only; therefore in each of
these tests the UIC and COMMENT fields were null in all rows. All loads
were conducted without contention from other VAX/VMS users.

The 10,000 row load is summarized in the graph presented below. The
format of the graph and other graphs which follow throughout Section 4
plots the average number o7 records loaded per secona over an interval of
records against the size of the data base at that time. The interval
chosen is 720 records which, at the time of the testing, represented ten
PMS bursts. The graphs depict the average ingestion rates observed at any
particular point during the load and visually emphasize the amount of
degradation present. In the graph below both of these are easily seen,

4-2

ORIGINAL PAGE :8

BUSINESS AND TECENOLOGICAL SYSTEMS, INC. OF POOR QUALITY

LR

Load Summary

! ORACLE PMS 10k Record Data Base

KEY,S1D,MID,SDF,TIME \UIC I-dexed [
. : i i : N

The first two points plotted (at 720 records and 1440 records) show an
apparent increase in performance as the data base gets larger, while after
the 1440 level a gradual degradation is observable, One might attribute
this early periormance increase to some initial overhead paid for opening
the data base in preparation for the load, but examination of many other
load results indicate that this is not the case. The observed increase in
performance is atypical and might be attributed to the VAX system software
activating some background task. Other than this anomaly, the graph is
demonstrative of ORACLE's normally flat degradation after five thousand or
so records are nresent. The obierved range of load rates shows a high of
almost 2.5 he. _rs per second at about the 1,400 row date base size and
falls to about 1.75 headers per second at the 10,000 row level.

4-3

BUsSINESs AND TECHNOLOGICAL SYSTEMS, INC

The 42,000 row load is summarized belcw and demonstrates a more
“choppy" degradation than the 10,000 record load above.

_;‘__’ -
Fop i
" Load Summary
ORACLF. PMS 42k Record Data Base
. KEY ,MID,S1D, TIME,SDF,UIC Indexed
- (0 to 42k)
g
Number of
Header
Records -
Loaded -
Per
Second
[
1

5 10 15 20 25 30 35

2
R L SOt ULV ST U (PO 00 U000 W O TRV 1 W) IO co
Burbet of PN Header Records Toaded ((hl,us‘;,nlasl) Lot ‘! IS e
: i L : D !

RN R AN RN

ORIGPAL U0 -
IF POCR QUALIS

BisINESS AND TECHNOLOGICAL SYSTEMS, INC

There is no initial gain in performance as seen before but rather the more
typical degradation starting in & ron-linear manner and becoming very grad-
ual shortly thereafter. The observed load rates show that initially the
load rate is highest at a 2.75 header per second level but drops to the
1.85 level before reaching the 10,000 row data base size. From 10,000 rows
to 42,000 rows, the load rate drops only .25 headers per second to about
the 1.6 mark.

4.1.1.2 Lload Performance - Dual Load

Because a PMS goal was to ingest headers at the rate of seven a
second, investigation into alternative load approaches and data base
designs was begun to see if an improved rate could be achieved. As one
alternative approach to loading, a test was made to see if two load rou-
tines running concurrently could load more data into the same table than a
single routine. The theory seemed plausible assuming that for any load
process a significant amount cf I/0 must be present and therefore while one
process is waiting for an 1/0 to complete, the other might be computing and
initiating another 1/0 request. The test devised for studying this alter-
native required the use of two load routines (which were essentially ident-
ical), each of which loaded 1,000 PMS headers into an initially empty
table. The loads were submitted simultaneously and, after completion of
both, a total of 72,000 rows were present in the data base. Graphs of both
loads appear on the following page and indicate that the approach is not
successful in increasing total performance, When examining the graph, note
that each point plotted represents a single burst, or 72 headers, rather
that 720 headers as is commonly used in other graphs. Apparently, the
hoped for increase in performance cannot be achieved, perhaps because
ORACLE has some internal "lock out" that prevents the two load programs
from achieving the synchronization theorized. An undesirable side effect
of this approach is that total CPU time required rises somewhat, indicating
that a greater amount of computer resources are consumed to perform the
same amount of work.

e

AN

WAL PAGE
POOR QUALITY,

T e
VAL

1
-

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

E] :
L] ¢y :
4 g% e
T ~ &y
—< oy <
z e < ¢ -
C 5 V. e e i
L s ey Pnlu
v 20
MY-3¥ cE
s = B RO i Bt o st B e S s e = o o .
LT [S :
[V = “
2B =
) 2y s
Li B5
o - g
Mkm 00
2N & :
e R.Tu E
£a =R e :
ZEE B = :
e 1.7 —
3 % - . :
[N ey - o —
=g - D :
EER 1% igE :
uMP. ..w.l& ge= -
“°E "8] T
o] N e~ PO o
x © ‘
L - B
L
<
-
[-

ds. Laad

i

!

Trreprr e

\i
.
©
1
T e
]
iE
<
-
4
©
5
@
<
b S 3
[} c
o
= <
- -2
r,. -
] o
- 2
g 3
o
- 3
G o
qT&E. g
T >
Yo c:
[N
g g8l
w..(..., 18
I [
= z

4-6

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

4.1.1.3 Load Performance - Reduced Number of Indexed Fields

Alternative designs of the data base were attempted which would
increase load performance toward the target goal of seven headers per
second. The alternatives required that features provided for in the
prototype design be lost or relaxed. This is not unusual in data base
design because it is seldom that a data base can serve all the needs of a
diversified user group without compromise in some form. Two basic
approaches were tried in altering the design. One approach tried reducing
the number of indexed, or "imaged", fields to lower the overhead required
to add rows to and delete rows from the data base. The trade off here is
obviously the reduction of fields through which users can qualify queries
and get direct access results rather than sequential access.

To assess the advantage (for load performance) of reducing the number
of indexed fields, a series of designs were implemented and loaded with at
least 5,000 records. Fach design originated by eliminating a remaining
indexed field from the preceding design while using the prototype design as
a starting point. Since the UIC field was null, it was ignored, and, since
the KEY field was required by PMS for identification of packets, it was
always maintained as an index. Thus, four designs emcrged as test candi-
dates. The first eliminated the index for the SID field leaving the KEY,
MID, SDF, and TIME indices. The second omitted the TIME index leaving KEY,
MID, and SDF. The third omitted SDF leaving only KEY and MID and the last
indexed only the KEY value.

The graph below shows the results of the first test. Here four
indices, KEY, MID, SDF and TIME were present and 5,000 records were loaded
with the average headers per second calculated and plotted for each group
of 720 headers.

4-7

BUSINESS 4ND TECHNOLOGICAL SYSTEMS, INC.

5

URIGINAL PAGE o

R

Load Summary

ORACLE PMS 5k Record Data Base

KEY,MID, SDF, TIME Indexed

Header =~ 7 S ot et Rl o [e
Records
Loaded -

Per
Second

i

— to =

+ sossifm} il
! 3 4 5 3 7 9 XU
U O OO SN SN VAU VU SIS GO SN RO B S bl i L I
Number of PMS Header Records Loaded (thous mds) D ? R A e

R T U 0 A O I O IR O

A comparison of this graph with the initial part of the graph for the
42,000 record prototype load reveals a definite improvement in perform-
ance. The initial 720 header point is the high point on both graphs and
the new design shows a .25 header per second gain by beginning at a 3 head-
er per second rate. This margin is still present at the 5,000 header
point. The same gradual degradation normally observed in the ORACLE load
performance can be observed as well.

By removing the TIME index from the above design another significant
increase in performance can be found. A graph of the load performance
ising this design appears below and can be compared to the above graph.
Again, 5,000 records were lcaded and the results were plotted similarly.

4-8

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORIGINAL FAGE ix
OF POOR QUALITY

load Summary
ORACLE PMS S5k Record Data Base
KEY ,MID,SDF Indexed

- 5l

Number of ~
Header i
Records - 4§
Loaded :: i
Per i §
Second

[;l; VZV 3 '. 5 6 ’ 9 v'c" ‘0
e . S S N O 1 B P A RS R Y G T

N\xmbcr of PHS, lle‘u(er Records Loaded {thouswnds)

S Y T R T ey

In this design, KEY, MID, and SDF were indexed. The initial load rate
jumps from about 3 headers per second in the previous load to nearly 3.7
in this load. In general, a comparison of the plots demonstrates a consis-
tent gain of from .5 to .7 headers per second throughout the load when the
TIME index is absent.

The next design required indices for the KEY and MID fields, eliminat-
ing the SDF index. (Recall that when any index has been eliminated during
this discussion, the field is still present as a column in the datc base
table.) The results of this load have been plotted and appear in the graph
below.

4-9

BusiNess AND TECHNOLOGICAL SYSTEMS, INC

Load Summary
ORACLE PMS 5k Record Data Base
KFEY,MID Indexed

!' FEETS O BhRet BRI |x’| e | RRR{ | e |’ HiBL IR TR i Gy : c)
’ Number of PMS Header Records Loaded (thm{lsands) U R ;
ot 5 {

T T

Another substantial gain in load performance is detectable between this
graph and the preceding one when the SDF field was present. The load rate
begins at about 4.25 headers per second which is more than .5 headers per
second better than the previous results. An advantage of from .5 to .75
headers per second is readily observable at the same relative positions
along the graph.

OitioEIAL
BUSINESS AND TECHNOLOGICAL SYSTEMS, INC OF POOR QU A. '-rx‘z

The last of the designs possessed the minimum single non-null index
ORACLE required. Only KEY was indexed (except for the null UIC field) and,
in this case, a total of 10,000 PMS headers were loaded into the data
base. The results of this test are plotted on the graph below.

S
Load Summary

ORACLE PNHS 10k Record Data Base
KEY,UIC Indexed

Number of :
Header
Records

Loaded -
Per ;

Second |

£ST X 12/81

The plotted results show another gain from the previous graph. The initial
point is about 4.75 headers per second, a gain of almost half a header

per second. This margin is readily apparent throughout the 5,000 record
level in the previous graph and continues to demonstrate the overhead that
is attributable to the building and maintenance of ORACLE's B-Tree index
structure.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

A comparison of these results, with only KEY indexed (ignoring the
null field UIC), to the results of the prototype loads with KEY, MID, SID,
TIME and SDF indexed, reveals an overall gain of over 2 headers per second
at the 10,000 row data base size. This means that instead of loading at
below 2 headers per second using the prototype design, a design with only a
single index on KEY can perform at about 4 headers per second at the 10,000
record level., This is still 3 headers per second below the desired goal
and would not support queries from the user community beyond users who
could identify a KEY field value or values.

4,1.1.4 Load Performance - Reduced Number of Fields

A second apprcach in altering the data base design was to reduce the
number of fields (not just the number of indexed fields), by concatenation
of fields.

An examination of the logical relationships of each of the fields in
the PMS primary packet header yielded a pair of fields that were good
candidates for concatenation. These were the MID and SID fields. It was
thought unlikely that a specification of SID independent of MID would be of
any value to a user. This is because SIDs are defined uniquely for every
mission; hence, no consistency need exist between SIDs of different MIDs,

A test was conducted in which the MID and SID fields were concatenated into
a single 16 bit field replacing the original pair. Both the KEY field and
the MIDSID field were indexed (in addition to the null UIC field) and 5,000
PMS header records were loaded into an empty data base. The results of
this test have been plotted on the graph below and can be compared with the
graph of the test load when the KEY and MID fields were indexed that was
discussed earlier in this section.

The results of both plots are somewhat similar; both start at about
4.25 headers per second while the concatenated field test concluded at
about 3.4 headers per secon” and the other test at 3.2 headers per second.
The advantage in performance which the concatenated test demonstrates is
attributable to the reduction in total number of fields present in the
table,

4-12

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Load Summary
ORACLE PMS Sk Record Data Base
KEY ,HIDSID,UIC Indexed
(Concatenated MID and SID Flelds)

Header |
Records { 4!
Loaded
Per
Second -

: a KR BLIRHIRH i i
T T ¥ v bt Y t T i T v T T T
Chn: ; R R R B il i ofi :
Number m'l; i HIHI ; ; Al iR HHR R : :
i il SN | f : H b :1
* ; I ; ; i i i

R ""?-¢N'¥ﬂ'ﬁ“ e LI S T O S g W 8 RAAR (27 AU SURPP P gL .'“‘""{’ L'ff
O L T T R R T el o

4.1.1.5 Query Performance

While, for this particular application, the query rates were not of as
much interest as load rates, several queries were ronetheless performed on
several of these data base designs. The queries which were performed are
shown here:

SELECT * FROM HEADER WHERE KEY =

and
SELECT * FROM HEADER WHERE SID =
AND MID =
AND SDF =
AND TIME = Onibatii.. L

QF POOR .

The results of the two queries are shown in the two tables below.
fach query was executed three times. In the first, KEY, MID, SDF and TIME
were indexed. In the second, KEY, MID, and SDF were indexed, and in the
last, only KEY and MID were indexed. The first query was performed on 5%,
or 250, of the records in the data base. Each query produced ore row., The
second query was performed 25 times, and multiple rows were ratrieved each
time (averaging 4-15 rows).

ORACLE QUERY RESULTS
SELECT * FROM HEADER WHERE KEY =

Indexed Fields ' Average % Degradation
Response Time in Average
(Sec) Response Time
KEY, MID, SDF, TIME .204 -—-
KEY, MID, SDF .199 - 2.5
KEY, MID .239 +17.2

ORACLE QUERY RESULTS

SELECT * FROM HEADER WHERE SID = __ , MID = __, SDF =, TIME = ___
Indexed Fields Average % Degradation
Response Time in Average
(Sec) Response Time
KEY, MID, SDF, TIME 3.25 -—-
KEY, MID, SDF 33.61 + 934,2
KEY, MID 14.59 + 348.9

In the first table, the results of the first two runs show that no
real difference appeared in query results between the two, as might be
expected. However, the results of the third run appear te indicate that
the number of indexed fields had an impact on query performance. By
looking at he results of the report file generated . e query, it was

4-14

MSINESS AND TECHNOLOGICAL SYSTEMS, INC.

determined tha. thc presence of an outside process was most likely the
cause of the increase in average response time. This outside process
artificially raised the :.erage responic time,

In the second table, the results of the three runs are drastically
different. In the type of query executed here, the ORACLE 2,3 parsing
mechanism choosses the last index encour‘ered in the query statement as the
one it uses to select rows which satisfy the query. Cnce all rows are
selected which satisfy that part of the “where clause", a :2quential search
is pervormed to satisfy t"e remaining parts of the whcre clause. In the
first run, the TIME field was the itast coiumn encountered in the where
clause with an index on it. There were approximately 50 different values
of TIME. In the second run, the SDF field was the last field encountered,
with 4 different values. In the third run, the MID field was the last
encountered, with 10 different valucs. When the index chosen has many
unique values (as with the TIME ¢- " 1), for any particular value, fewer
records satisfy that selection. ~ . ke TIME field, there were
approximately 100 rows with each unique value of TIME, With the SDF field,
there were approximately 1,250 records with each unique value, and for the
MID field, there were approx:itely 500 records with each unique value.
Therefore, in runs above, after the initial 100, 1,250, and 500 rows were
retrieven for each run, respectively, a seguent®al search was performed on
those rows to satisfy the remaining parts of the where clause. Hence the
first run had the best performance and the second run had the worst
performance.

4.1.2 SEED Ve.sion £E.11.9

The goal of this SEED testing was to determine how a SEED data base
could be alcered to meet the PMS project goal of loaaing 7 headers per
second. Also included in this section are results of queries which were
performed on the various data base designs in order to gain a better
unde ~_tanding of SEED's query capabilities. Testing was initially
performed using Version B.11, but when Version C.0 wes instaiied, it too
was tested.

4-1%

. -

L

s e -
[

BUSINESS +vD TECHNOLOGICAL SYSTEMS, INC

4.1.2.1 Load Performance - Prototype Design

In the PMS application, the initial, or “prototype" design (see
Appendix 1) consisted of record RQ_PKEY; which contained the entire con-
terts of the PMS primary and secondary headers. In addition, five owner
records were added, 7Three of these, Rl_ﬁID, RZ_IIME, and R4 _SID, had a
significant impact on load rates. The others, R3 IID and R5 UIC were
included only “or user created packets, and therefore had significance on
loal rates only in the fact that there were pointers in the R6 PKEY record
for them. A seventh record, R7_COMMENT, was also incluaed for user created
packets. R7_COMMENT is a member of R6 PKEY. Three data bases were loaded
using this design, one with 50,000 header packets, one with 10,000 header
packets, and one with 5,000 header packets. The load results of the 50K
data base are shown on the graph below.

Load Summary
SEED PMS 50k Record Data Base
MID,SID, TIME ,PKEY Records

ﬂ&

ERans \ !"'
i 1 WL N

ﬂﬁ;f%mms.

| Numter of . J I
Header '] | |

| Records :
. Loaded !
Per . bkl

' Second ¢ Fp

-16

BUSINESS AvD TECHNOLOGICAL SYSTEMS, IvcC

Initially the data base was being loaded at a rate of about 5.75
records per second. By the end of the load, c¢nly about 3.25 records were
being loaded per ca2cond. Both of these figures fall below the original PMS
project goal of 7 headers per second. At the end of the load the data base
was about 85% full. A surplus area of 157 was included in the design to
accommodate upuates and to cut down on the number of page overflows.
However, the "“peaks and valleys" appearance of this graph and most of the
others indicates that there were still many page overflows. A spot check
of the data base statisticc showed that alL-ut 40-45% of the pages in the
data base were 95-100% full. Therefore, when the hashing algorithm tried
to put a record on a page that was already full, a sequential search had to
be done on the following pages, until space was found for the record.

While the load rates continued to decline as the ata base became more
saturated, the decline was generally linear until about 42,500 records had
been loaded. At this point, the data base was about 75% fuil. The lcad
rates dropped faster past this point.

In comparing these results with the 10K protctype load shown below, it
is observed that the 10K load was significantly faster, from about 7 head-
ers per seconc initially to about 4.5 headers per second at the end of the
load,

It was thought that, at least initially, the 50K load would be faster
because there were nore pages available, and therefore less chance of page
overflow. However, because in both runs the number of btuffers available
was identical. and in the 50K run there were more pages in the data base,
the chance of a particular page already being in memory was reduced. This
is borne out by comparing the data base load statistics in Table 4.1-1,

The number of direct I/0's ir the E0K load is about 5.4 times the number in
the 10K load, and the total connect time is about 6 times that of the 10K
Toad

4-17

BUSINESS AND TECHNOLOGICAL SYSTEMS. INe

Jo L r“:;;”f;,”?T'i[fﬁ}ffTﬁf} LR
RIS B 5 e eaded 4L LE SIS WA R N

Load Summary

SEED PMS 10k Record Data B-se

MID,STP,THE PKEY Re:ords]
TP S OO T O T O T : L
S

0: H Ly § i . S N : I NS I K gl FE CE N PO TS A i
i ! i 1 ” * 3 BN T i T R

: : [: t : T
: 4 S s fo]
LU IOUOR VOIS POV 00 SNV UG JUNNE SOV SOUUSAUUE FLAER-UR NULL EOUN LU UHUR VOUOL WS WY FUOUUOE JODUL N SRS SUSE SUOLSSAUON S N S
Number of PMS Header Recnrds Loaded (thousauds)

Y N O I U R O

'r'-, .- - < ~

The 5K prototype data base shown below initiaily Toaded at about the
same rate as the 10K data base. At the end of the load, the 5K data base
was about 72% full and about 5.1 records were being loaded per second. At
the same point in the 10K data base load (i.e. 72% full or 8,250 records)
the load rate was about 4.9 records per second, not much differert than the
5K data base. However, the graph of the 5K data base load shows a somewhat
smoother curve., Because of the hashing 2igoricthm used to determine the
location of records within the data baze, the number of pages in the data
base must be chosen carefully. The hashing algorithm uses this number in
calculating a page number for a particular recuru. It is recommended that
a prime number of pages or a number that contains large prime factors be
used to aid in the even distribution of records within the data base. Two
consecutive prime integers may produce very different load results. Per-
haps if the next higher or lower prime integer had been chosen for the 10K
load, the curve might have been smoother,

4-18

BUSINESS AVD TECHNOLOGICAL SYSTEMS, INC.

Ml

oRr:i-

e wra

OF F:

load Summary

SEED PMS Sk Recourd bata Base

MID,SID,TIMY ,PKEY Records

nds)

" Number of PMS Header Records Loaded (thousa

4-19

BUSINESS AND TECHNOLOGICAL SYSTEMS. INC

SEED LOAD RESULTS

Data Base Data Base Average Total Total Total Total

Size Description Insertior Connect CPU Direct Page
Rate Time Time I1/0's Faults

(Hdrs/Sec) (Sec) (Sec)
50K Prototype 4,55 11,000.60 | 4,961.82| 156,354.| 150,653,
10K Prototype 5.43 1,839.96 9%4.68{ 28,771.{ 30,287,
5K Prototype 5.93 843.84 450.74{ 12,661.{ 15,873.
10K No TIME Record 6.88 1,452.47 733.70| 20,927.| 26,42].
5K No TIME Record 7.61 657.35 359.49 9,732.] 13,276.
10K PKEY Record Only 8.18 1,222.48 442,321 15,352.; 17,940,
5K PKEY Record Only 12,32 405.80 208.86 7,079, 9,687.
5K SDF Record Added 5.53 904.37 514,37} 14,035.f 16,033,
5K MIDSID Combined 5.80 862.69 403.61} 17,079.] 17,163,
TABLE 4.1-1

4-20

ORIGINA. ./l

BUSINESS :VD TECHNOLOGICAL SYSTEMS, INC oF POOR QU;«UT\’

4.1.2.2 Load Performance - Reduced Number of "Owner" Records

As was previously mentioned, one of the goals of the PMS project team
was to load 7 headers per second. In an effort to meet this goal, data
base designs were attempted which included fewer "Owner" records. The
“Owner" records were included originally so that more than just the “PKEY"
field could be “CALC"ed on.

The first variation was the removal of the R2 TIME record on the 10K
and 5K data bases. Although initially the load rate of 8.34 headers per
second on the 10K data base was well above the goal, the rate dropped off
to about 5.3 headers per second, as shown in the graph below.

TIpe CTT RS
' [4o R ..,;.L",LLL, IR NI
SRR ST Load Summary
Y 35 BN
I . SEFD PMS 10k Record Data Base
Jw;_ o MIiD,STD,PKEY Records
1o] R
" } . L o o
6 i : ifl bl :
{ I B AR N IR0 IFFRF IO A3 COUN 541611 YOO SO st IEEE S50 G 1| Il WP [S0 GEER DA IKEE 0 CEER 990 WM SO CEE ARY NN SO I OO
Number of :
Header . if:j..f..p..
Records ¢
|, Loaded
: Per bh
Second |]
E

Number of PMS Header Records Loaded (thou“nde) : i ; '

CER T T e L

rl-ll 1; s 11 S EREE R T S I ;‘ WHA¢@;A¢U'

4-21

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

The graph indicates that there were 2 points in the load, at approxi-
mately 4,000 records and 8,000 records, where the hashing algoriti had
trouble finding free space because of page overflows.

In the 5K data base load, the results improved, from 9.3 -> 6.3 head-
ers per second, and while the load rate still did not meet the goal, the
data base wes loaded more evenly. At the end of the load, the data base
was about 70% full, with the majority of pages 55-70% full. That graph is
shown below.

Load Summary

SEED PMS 5k Record Data Base
MID,SID,PKEY Records

i :
i Number of ;
. Header
i Records & |
loaded |
Per :

Second

|
I i
!
j

0 ‘zlf' v .

i - . 1 o
& VERE] Ve ol (O LR T R T
f PMS Header R

e

LAk

2 4

T T R G S A N
d <3 (thousands)
OTRE R R R S

The next variation on the prototype data base was to remove all
records except for the R6 PKEY record. The results of the 10K data base
load are shown below,

4-22

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ORIGINAL PAGE &
OF POCR QUALITY.

Load Summary
SEED PMS 10k Record Data Base
PKEY Record

eI

i y def ot
B
’—‘;-'Lm“ e
Number of i |7
Header '
Records :
L Loadedis

i {THIR
8 ARy

; 2 3 P s
i O O B A RN R A 0. W18 A ;
LU bl L Nusber of PHS Header Records Loaded (thousands) |-
EREN RN 151 R T O B 0 e S 1 A A {

The load started at about 14.25 headers per second and declined aimost
linearly until about 5,750 records had been loaded. At this point there
was a drastic drop from about 8.5 to about 5.5 and then on to a Tow of
about 4 headers per second. Normally, an explanation for this would be
that there were many page overflows due to poor hashing of the data.
However, a glance at the data base statistics revealed that this was not
the case and indeed, only 1% of the pages in the data base were 95-100%.
Looking at the load statistics, there were a few times in the load where
sudden jumps in time appeared. Currently, this can only be explained as an
anomaly caused by VAX system software or an undetected process that
interfered with the standalone mode of data base loading. In a similar
case loading a 5K data base, this drastic drop in load rate did not appear
(shown below). The load started at ahout 15,25 headers per second and

4-23

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

ended at about 9.5 headers per second, well above the goal of 7 headers per
second. The smooth curve is an indication of a well distributed data

base. At the end of the load, the data base was 57% full and the majority
of pages in the data base were 40-60% full.

Load Summary :

i
SEED PMS S5k Record Data Base “‘Lf'“u'
PKEY Record :

 Number oﬁ
o Header : 9} 1
Records 4

O T lllllmlllllLuL-l

Number cf PHS Header Records Loaded (thousands)

T O O O I O B R A

4,1.2.3 Load Performance - Increased Number of "Owner" Records

Another data base design was implemented to test the effect of adding
more “"Owner" record types to the prototype design. The results in the
graph below show the effect of adding one record type, R8 SDF1, to the data
base design.

4-24

BUsINESS AND TECHNOLOGICAL SYSTEMS, INC.

Load Summary
SEED PMS Sk Record Data Base
MID,SID,TIME,SDF,PKEY Records

i

Number of
Header
" Records
Loaded
Per
Second

4 ;
AR A |

5
'
tore:

s
I

Numbcr cf PMQ Hcader Recordq Loaied (thrusand)

0 R T T 0 e D R

Where the prototype 5K data base loaded from 7.1 -> 5.1 headers per
second, the addition of a new record type reduced these numbers to 6.5 and
4 75, respectively. Not only must the new record type be stored, but the
proper set linkages must be made.

4,1.2.4 Load Performance - Reduced Number of Record Types

In the prototype drsign (Appendix 1) the R1_MID and R4_SID records
were stored separately; the R4 SID being stored “via" the set connecting
R1_MID with R4_SID,

In the final data base design var.ation, these two records were com-
bined into one. The effect cof this was to reduce the number of records to
be stored and to reduce the number of set linkages to be made. The results
on the graph beiow show a slight improvement in the initial load rate from

7.1 to 7.2 headers per second, but in general the rates were about the

same.
4-25

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED PMS 5k Recerd Data Base
MIDSID,TIME,PKEY Records

R e A ; i,.g,: r

0 1 R l“m%m
Load Summary y .

N e

Number of
Header
Records
Loaded 4
Per
Second

e B e

I £ R

e

2 ‘ 4
Hf SHHION R R l""”l difip i
Numbet of PHS ader Records Loaded (thous-mds)

'UJ“LL_ 1 RS LA R I

4.1.2.5 Query Performance

While a primary goal of the PMS application is the load rate of 7
headers per second, query rates are also of importance. Many tests were
made to determine the effect of data base design on querying., A detailed
explanaticn of each of the queries performed can be found in Appendix III,
The results of performing the queries on different data base irsigns are
discussed here, Query times include any HLI code necessary te perform the
query, for example forming the unique key. Some of these results are ~>le-
vant te tne discussions in Section 2.3. These initial queries were
performed using SEED Version B.11.9.

The first query involved accessing 5% of the R6 PKEY records in the
data base by “CALC"ing directly on the unique key, PKEY, associated with
the record. This unique key was formed, while lcading, using a combina-
tion of 6 of the fields in the input record. In querying, a record was
read from the same input file used for loading, the same unique key was

4-26

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

formed, and the correct R6 _PKEY record was accessed. This process was then
repeated until 5% of the R6_PKEY records had been accessed. This is the
quickest, most direct method of accessing an R6 PKEY record in the data
base. However, unless the user has all 6 pieces of information available,
this method cannot be used, Because this query did not depend on access to
any other records in the data base, the time involved in accessing one
ko_PKEY record should be independent of data base design, except for the
overhead involved with pointers. The results in Table 4.1-2 show that for
5K data bases the average connect time to reuv: ieve one record ranged from
.074 to .107 seconds, or a total time difference of just over 8 seconds in
accessing 250 records.

If the user does not have the necessary information to form a unique
key, another method of accessing the header information must be used, The
user may get to the header information by first accessing one of the other
records in the data base and then doing a search on its members until the
proper header is found. The results in Table 4.1-3 show that in all of the
data base designs, the fastest way to retrieve a header (other than "CALC"-
ing directly on the primary key) is toc get to it by the owner record

SEED QUERY RESULTS - "Caic on PKEYs (5%)"

Data Base Data Base Average | Total ‘ Total | Total Total

Size Description Response|Connect| CPU Direct| Page
Time Time Time 1/0's | Faults
(Sec) (Sec) | (Sec)

10K .084 21.1 | 12.13 367. | 1,290,

Prototype - :

5K N74 18.4 | 10.65 335. | 1,754,

10K No Time Record 107 26.8 11.77 345, | 1,182,

5K .ng4 21.1 | 10,69 326. | 1,852.

hK SDF Record Added| .08l Mm,2 | 10,62 335. | 1,817.

5K PKEY Record Only{ .080 20.1 10,29 325, | 1,739,

5K MIDSID Combined N91 22.9 | 10.23 326. { 1,732,
TABLE 4,1-2

4-27

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

E-1'y NVl

_ ..,
“ (3S°) SAIAd Puly
*€69°9 | “tEL e 89°G5 01°981 ov"L *QISUIW 2i@)| paulqwo) QISAIW %S
N
(%5°) sADid puty
*162°61 | *L2:'1e | 09°168 £6°986 8t°6¢ *40S 21®)|PdL., PJOIDY 4GS %S
"oty 1091 £ec°1g 02°s. 10°¢ P3PRY PJ0OFY 30S %5
— (45°) sADdid pui
“IWIL 21D
EILy | °665°1 Ly 0E 3L°28 1€°¢ 3df101044 b
*2L8°01 | *162°9 £9°9%1 69°Ge €0°L1 PJOJ3Y Buii| ON P
(%5°) SAINd Puts
*$52°01 | *20£‘8 8°¢Sl £v°2L8 06° T ‘GIW 21eD|Pappy PJ023Y I0S %G
*YTL°0T | *90€°S £L°1ST (9°(Th 1£°91 30303044)
‘0999 (X B G1°98 G1"p91 [S°9 pJ0o23y swi| ON %S
{4G°) SADId PULS
*8L5°9 *L21°¢ S1°89 2°0s1 €09 ‘GIS PUL) “GIW OLRDIPIPRY PJ0DY 43S %S
‘1149 *621°¢ €8°11 2£°022 18°8 3dA303044 AS
si|nej 5,0/1 (295) (293) (0as)
abey 10241Q) Sl Nd) 3wl 3d3uu0)|awi) 3sttodsay uo1adLJos3(uniadiLadsag z 1§
leioL {e3ol {e3of 12301 abedsay Kaan) aseg eieq aseg ejeQ
W(%6°) SAIud pury 21e), - SLINSIY AYIND 033S

4-28

B SINESS ANE TECHNOLOGICAL SrSTIMS, INC

tha* nas tae most occurrences. Tthat is, if the R6_PKEY record has two
“owner" records, the R1_MID record (with 10 occurrences) and the R2_TIME
recrrd (with 50 occurrences), the fastest way to retrieve an R6_PKEY record
¢, to find the correct RZ_TVIME record, and then search its members for the
R6_KEY. This is because, on the average, with 5,000 R6 PKEY records stor-
, each R1_MID record would have 500 members to search, but each k2 _TIME
© 'd have only 100 members to search.

An ~ *erasting co ¢ r~ison can be made between the query "calc MID,
¥ir, SID, find PKEYs" and "caic MID, find PKEYs" in Table 4,1-3. There
wer2 10 occuriences of record R1_MID and 3 occurrences of record R4 SID for
e~ch R1_MID (or 30 R4 SID occurrenc-s totally). In each of the three data
pase desicns testing these two queries, the acquire time for a single head-
er was 2 to 3 times longer using the "find MID, find PKEYs" anproach than
the “find MID, find SID, find PKEYs" approach. This can be explained as
follows. For each R1_MID, there is an average of 500 R6_PKEY members. But
for e..h unique combination of R1_MID and R2 SID there is an average of
only 167 P6 PKEY members.

Keeping in mind that by forming a unique combination of MID and SID
hefore searching fer the proper header made access quicker, tests were made
where the MID-SID combinations were formed during loading. While this did
not have much effect on the load rates., query rates improved slightly.

Last, supposing that the 5,000 record data base had orly one record,
the R6 PKEY reccrd, and that the user did not have enough information to
form the unique key, tests were made to access the data base sequentially
(FINDAP) and through the "find using" {(FINDU) command. The sequential
search takes the longest time, averaging 38 seconds to retrieve each
header. In the "find using" access method, the user supplies the DBMS user
work area with the values to be matched. The DBMS then finds the correct
header. While this access method was much faster than a sequential search
(averaging 19 seconds per header), it should be avoided by adding an owner
record to the data base design, if possible. The following tahle shows the
results of this testing.

@) 4-29

C-9

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED QUERY RESULTS

Query Average Totatl Total Total Total

Description | Response Time | Connect Time | CPU Time | Direct | Page
(Sec) (Sec) (Sec) I/0's Faults

Find PKEY's
thru findu
(.5%) 19.9 499, 360.23 4,335, | 13,511,
Find PKEY's
sequentially
(.5%) 38.0 951. 764,93 4,334, | 13,837,

4,1,3 SEED Version C,00.02

4.1.3.1 Load Perfc.mar.e - Prototype Design

The most significant change to the SEED DBMS in the C.0 version was
In the PMS-like
appiication described in Appendix I, the C.0 testing focused on the effect
of indices on loading and querying.

the introduction of pointer arrays and indices.

As a guideline to comparing the B.1ll
and C.0 versions, the initial data base load consisted of loading the
“protcotype” design (See Appendix 1) .o determine whether the code and error
handling optimization present in the C.0 version had a significant effect
on load rates. In comparing the results of the B.11 and C.0 loads in the
table below it can be seen that the CPU ari total connect time increased
slightly in the C.0 version, as did the number or page faults.

SEED LOAD RESULTS

Version | Job : Total Total Total Total
Number| Connect Time|CPU Time {Direct 1/0's Page Faults
(Sec) (Sec)

B.11 1 790. 439, 12,643, 15,335,

2 812. 437. 12,640, 15,473.

3 822. 440, 12,646. 15,381,
c.0 1 84y, 454, 12,649, 17,592.

4-30 Flé %

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

4,1,3.2 Load Performance - Use of Pointer Arrays (Indices)

The remainder of testing with the C.0 version consisted of a data base
with only the R6_PKEY record (because this was shown to load the fastest in
the Version B.11 testing of variation in data base schema definition) and
various indices on items in the R6_PKEY record. The loading results of
these tests are shown in Table 4.1-4., Where loading a 5K "PKEY Record
Only" data base (in version B.11) used 405.80 connect seconds, 208.86 CPU
seconds, 7,079 direct 1/0's and 9,687 page faults, the load times for all
of the "indexed" runs were much greater. Because the load rate of the PMS
data base is of greatest importance, the use of indices in that application
may be unreasonable. However, because of the potential improvement of data
base querying with the use of indices, the loading results will be
discussed here. In all cases, the testing showed that loading an index
where the indexed item had a low rate of duplication (or no duplication)
was more desirable to one where the duplication rate was high. As an
example, the 2K SID indexed run may be compared to the 5K PKEY indexed
run., In the former, there are only 3 different values for SID. In the
latter, since the PKEY field is unique, there are 5,000 different values.
The "SID indexed" run took 1.7 times as much CPU time as the "PKEY indexed"
run and only loaded 40% as much data. Of importance also in the use of
indices, is the actual index specification to SEED in the schema. A
comparison of the two "Time Indexed" runs indicates this. In the first,
where there are 1,100 branches per node, 6 pages of 10,752 words per page,
and assuming each node is half full (which is a SEED worst case), 10 nodes
are needed to store 5,000 records. This can be accomplished with a two
level B-tree. In the second, where there are 24 branches per node, 127
pages of 512 words per page, and assuming each node is half full, 417 nodes
are needed to store 5,000 records. This can only be accomplished by going
into the third level of the B-tree. The differences in the load statistics
reflect these differences in index definition.

4-3

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED LOAD RESULTS

Data Base
Size

Data Base
Description

Average
Insertion
Rate
(Hdrs/Sec)

Total
Connect

Time

(Sec)

Total
CPU

Time

(Sec)

Total
Direct
1/0's

Total
Page
Faults

K

Record R6_PKEY only;
SID Indexed (1 page,
pa = 10,752 wds,

500 BPN*, setbuf
(20,20,18)

2.91

687.

539 []

3,149,

73.

5K

Record R6 PKEY only;
PKEY Indexed (5
pages, pg = 10,752
wds, 1,000 BPN*,
setbuf (20,20,18)

8.83

566.

310.

9,036.

3,917

5K

Record R6 PKEY only;
Time Indexed (6
pages, pg = 10,752
wds, 1,100 BPN*,
setbuf (20,20,18)

6.92

723.

440,

8,943.

1,101.

5K

Record R6 _PKEY only;
Time Indexed (127
pages, pg = 512 wds,
24 BPN*, setbuf
(100,100,90)

5.05

990,

703.

5,922,

37,551,

5K

Record R6 PKEY only;
PLI Indexed(4 pages,
pg = 13,322 wds,
1,100 BPN*, setbuf
(20,20,18)

7.96

628,

290.

8,942.

222.

5K

Record R6_PKEY only;
MIDSID Indexed (4
pages, pg = 10,752
wds, 1,100 BPN*,
setbuf (20,20,18)

5.96

839,

565.

8,931,

285,

* BPN - branches per node

TABLE 4.1-4

4-32

BUsIVESS AND TECHNOLOGICAL SYSTEMS, INC

4.1.3.3 Query Performance - Use of Pointer Arrays (Indices)

Queries were made to try to compare the acqui:ition rates of R6 PKEY
records between “owner-member" type access and “"index* access. For
example, when accessing .5% of the R6_PKEY records hy use of the owner
R2_TIME, member R6_PKEY method described in Appendix I, the mean CPU time
was about 1.2 seconds and the mean connect time was about 3 to 3.3
seconds. Accessing the same .5% of the R6_PKEY records using an index on
TIME took an average of 2.2 CPU seconds and 4 connect seconds. In
indexing, a B-Tree has to be navigated to find the correct record. This
takes more time than solving a formula for the data base key of the correct
record. If, however, records were to be found that fell within a range of
times, the B-Tree method would prove to be the faster of the two methods.
The results in this Section are consistent with the findings in Section
2.3.

Last, in comparing the access times of R6_PKEY records with indexed
values having little or no duplication, it can be seen that duplication
presents a problem in querying as well as in loading of indices. In Table
4.1-5, where the index was on PKEY or PLI (i.e. no duplicates) the mean CPU
time was about .035 seconds and the mean connect time was about .07 sec-
onds. In the two entries where the index was on TIME (where there may be
up to 100 duplicates of each TIME), the mean CPU time was about 2.2 seconds
and the mean connect time was about 4 seconds. In the case of the index on
MIDSID, where there were only 30 unique values, the mean CPU time was 3.7
seconds and the mean connect time was 6.4 seconds.

4-33

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

SEED QUERY RESULTS

Data Average | Total Total { Total | Total
Base Data Base Query Response {Connect cPy Direct] Page
Size Description Description| Time Time Time 1/0's | Faults
(Sec) (Sec) (Sec)
5K fRecord R6 PKEY findi PKEY .067 16.64f 8.75 349, 1,880,
only; PKEY Indexed|on 5% of
(5 pages, pg = PKEYs
10,752 wds, 1,000
BPN*, setbuf
(20,20,18)
5K [Record R6 PKEY findi PLI .070 17.61]f 8.39 338, 1,300.
only; PLI Indexed Jon 5% of
(8 pages, pg = PKEYs
10,752 wds, 1,100
BPN*, setbuf
(20,20,18)
5K [Record R6_PKEY findi TIME 3.97 99,291 54.28 | 1,950. 3,237,
only; Time Indexedjon .5% of
(127 pages, pg = |PKEYs
512 wds, 24 BPN*
setbuf (100,100,
90)
5K |Record R6_PKEY findi TIME 4,08 1,021.13}582.69 }18,138.| 80,460.
only; Time Indexedjon 5% of
(6 pages, pg = PKEYs
10,752 wds, 1,100
BPN*, setbuf
(20,20,18)
5K |Record R6_PKEY findi 6.39 1,597.361921.01 {27,755.] 115,905.
only; MIDSID MIDSID on
Indexed (4 pages, }5% of PKEYs
pg = 10,752 wds,
1,100 BPN*, setbuf
(20,20,18)
¢ BPN - brancnes per node
TABLE 4.1-5

4-34

BUSINESS ANL TECHNOLOGICAL SYSTEMS, INC.

4.2 DBMS Performance on Enlargec data Base

In an effort to determine the performance capebilities of DBMSs in a
larger data base environment, a test scenario was developed for the ORACLE
3.0 DBMS and the INGRES 1.3 DBMS. All testing was performed in standalone
mode .,

ORACLE Version 3.0 Results

In an effort to assess the performance capabilities of ORACLE 3.0 on a
large data base, a PMS-like application was implemented and a total of
101,000 records were loaded into the data base. The principlie purpose of
this test was to determine whether problems which were apparent in an
earlier version of ORACLE and documented in a report titled "Data Base
Management System Analysis and Performance Testing with Respect to NASA
Requirements™* had been corrected.

An explanation of the test scenario will be given here with test
results to follow. The data base was first loaded with 50,000 PMS header

records of the form:

HEADER Table

PRIMARY_KEY[MID SID|TIME]UIC|SDF |MESSAGE {HEADER

It should be noted that no indices were created prior to the load.
After the data base was loaded, indices were created on the PRIMARY KEY,
MID_SID, and TIME fields. Next, four queries were performed on the data
base. Each one is stated below. The numver of times each query was
executed is given in parentheses after the query,

* E. A. Martin, R, V. Sylto, T. L. Sough, H. A. Huston and J. J. Morone,
NASA Technical Memorandum 83942, Auqust 1981.

4-35

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Query 1: SELECT * FROM HEADER WHERE PRIMARY KEY = (250)
Query 2: SELECT * FROM HEADER WHERE MID SID = (20)

Query 3: SELECT ® FROM HEADER WHERE
TIME BETWEEN "780101000" AND "800101000" (5)

Query 4: SELECT * FROM HEADER WHERE
TIME = "781231106" AND MID SID > -12795 (5)

After the queries were completed, a job was submitted to drop all
indices. Then, another 50,000 records were added to the data base.
Following this, indices were created once again for PRIMARY KEY, MID_SID,
and TIME., Next, the four queries were repeated. Each query was executed
the same number of times as previously. However, because there were twice
as many records in the data base, each constituted half as large a percent
of the total number of records in the data base as before. The indices
were then dropped and query 1 was repeated. The query was executed only
once, to locate a record when no indices were present. Last 1,000 more
records were added to the data base and an index was created on the
PRIMARY KEY field.

The results of the three loads are shown in the table below.

ORACLE LOAD RESULTS

Records Loaded| Average Total Total Totat Total
Insertion | Connect CpPU Direct Page
Rate Time Time 1/0's Faults

(Hdrs/Sec)t (Sec) (Sec)

0-50K 19.0 2,625, 2,295, 179. 25,448,
50-100K 19.3 2,586. 2,278, 195, 27,202.
100-101K 19.2 52. 46. 5. 1,169,

4-36

SINESS AND TECHNCLOGICAL SYSTEMS, INC

The 1-1/2% difference in load rates was negligible and should be
dismissed as small variations in the operating system. There were no
problems evident in loading a large data base and no degradation surfaced
as the data base grew.

Whereas in ORACLE Version 2.3, any indices to be created were done at
table creation time (even though Version 2.3.2 allowed dynamic index
creation and deletion), in Version 3.0 indices were created and dropped
dynamically. Because the load rates depend heavily on the number of
indices, in this testing, the indices were created after the data base was
loaded each time.

The following table shows the results of creating indices on the
PRIMARY_KEY, MID SID, and TIME fields after 50,000 records were loaded and
again after 100,000 records were loaded. It should be remembered that
prior to the load of the second 50,000 records, all indices were dropped,
and the results below reflect that fact, The statistics which are
presented were obtained from the VAX account file,

ORACLE CREATE INDEX RESULTS

No. of Records| Total Connect Total CPU Total Direct | Total Page
in Data Base Time (Sec) Time (Sec) 1/0's Faults
50,000 1,622. 1,154, 21,554, 98,919,
100,000 3,324, 2,382. 43,001, 195,294,

The number of records in the data base does not seem to impact the
peformance of the "create index" function in ORACLE.

The results of all querying on the data base follows. In each case,
the query, number of records in the data base, and an indication of whether
indices existed on PRIMARY KEY, MID _SID and TIME is given along with a
summary of the results,

4-37

BUSINESS sND TECHNOLOGICAL SYSTEMS, INC.

G6/21-<0IS QIW
ANy 90T1E218!/
= IWIL

*288°21 |°€8 *v1 ‘91 2°€ *89 S SIA 000°00T JY3HM ¥3AV3IH
*80L°t *98 °01 *21 e °89] SoA 000°0S WOodd » 13373S
000101008
(UNV 000101087
N33ML38 3WIL
*GEE6 |°60S°SL |°601°2 |°LLE°t v°6.9 *810°02 S S3A 000001 JYIHM 430YIH
"$16°S *9eL°LE |°€90°T [°00L°T “obe "610°01 S S3A 000°09 Wodd » 133138
= OIS OIW
“L12°¢T |°0T9°T9 |°#¥S°T [°945°2 8°821 *geeles 0¢ SoA 000 ‘001 JU3HM ¥3QV3IH
*€81°0T |°vv80c |°9L¢ *062°1 G°¥9 *L99°1~ 02 S9\ 000°1S Wodd » 123138
*€86°1 *98Z2°p1 |°Zbb *599 °699 ¢ 1 ON 000°001 = AN AYVWIYd
*20€°c |°6£9 *81 b > e1* 1 062 S3A 000001 JYIHM Y3IAV3IH
*Shi1e *109 Ll ‘tE £T° 1 0s¢2 SIA 000°0S Wodd » 13373S
(295) (295) (29%)
s3|neq | s,0/1 | auw] awpl Juorandexy yoez| pajndax3 aseg eieqg
abeq |310941Q Ndd |3o3uuo)| asuodsay| 404 sasuodsay|Laan) sauw] Ul SpJo23Y
tesol Le3o} le3ol Le30) | 3besaay 30 "ON 30 *ON [S32ipu] 40 "ON KJany

SLINSIY AY3ND 37IVH0

4-38

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

It should be noted that the average response time listed in the table

is the average time to retrieve all rows in any one execution.

For

example, in the last row of the table, the average response time of 3.2
seconds was the average time it took to retrieve 68 rows from the header

table.

In most of the cases above, the query process did not seem to be

hindered by the number of rows in the data base.

However, when a

sequential search is done on the table because no indices exist, as in row

3 above, the number of rows to search would be instrumental in determining

response time,

Finally, the time it took to drop the PRIMARY KEY, MID SID, and TIME
indices is given in the table below at the 50,0.7 and 100,000 record

level.

obtained from the VAX accounting log.

ORACLE DROP INDEX RESULTS

As in the create index table, the statistics presented here were

No. of Records| Total Connect Total CPU Total Direct | Total Page

in Data Base Time (Sec) Time (Sec) 1/0's Faults
50,000 18. 10. 87. 3,555.
100,000 18. 10. 93. 3,427.

The size of the data base does not seem to have any impact on the time

necessary to drop an index.

4-39

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES Version 1.3 Results

In an effort to determine the performance capabilities of INGRES in a
large data base environment, a test scenario similar to that performed
using ORACLE Version 3.0 was developed using INGRES Version 1.3. During
the course of the scenario, a total of 101,000 PMS-1ike records were loaded
into a data base table. The table was structured as:

HEADER Table

MID_SID|SSC|SDF{TIME|UIC |MESSAGE | HEADER

The test scenario was as follows. The HEADER table was initially
created with no indices, as a heap structure, and 50,000 records were
loaded into it using the "COPY" command. When the load was complete, the
table structure was modified to ISAM on the primary key (a multifield key
on MID_SID, SSC, SDF, and TIME). Secondary ISAM indices were created on
MID_SID and TIME. Next, 4 queries were executed against the data base.
The four queries are stated below. After each, in parentheses, is the
number of times the query was executed,

Query 1: RETRIEVE (HEADER.AiL) WHERE MID SID = (259)
AND SSC =
AND SOF =
AND TIME =

Query 2: RETRIEVE (HEADER.ALL) WHERF MID_SID = (20)

Query 3: RETRIEVE (HEADER.ALL) WHERE
'780101000'<TIME<'800101000' (5)

Query 4: RETRIEVE (HEADER.ALL) WHERE
TIME='781231106' AND MID_SID>-12795 (5)

4-40

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

When the queries were completed, the two secondary indices were
deleted. The table was modified to HASH and two secondary HASH keys were
created on MID_SID and TIME. The same four queries were executed once
again, This time, though, query 3 was executed 2 times instead of 5. The
main reason for this was a concern for the amount of time the job might
take. Next, the two secondary indices were deleted, and the table was
modified from HASH to HEAP to prepare for another load. The load was tken
performed, adding another 50,000 records to the data base. The entire
scenario as described above, was then repeated for the 100,000 record data
base. This time, the queries were repeated 250, 20, 5 and 5 times for
queries 1, ¢, 3, and 4, respectively, when all indices were declared ISAM
and were repeated 250, 20, 1, and 1 times for queries 1, 2, 3, and 4 when
the indices were declared as HASH. After all queries had been performed on
the 100,000 record dat> base, the secondary indices were deleted and the
table was once again modified to HEAP. Query 1 was then executed one time
on the non-indexed table., Using the "REPEAT APPEND" command, 1C grouns of
72 records were added to the data base and then immediately deleted. The
purpose of this test was to assess the perform .nce of the "REPEAT APPENC"
command. In order to test tne third method of loading, 1,000 records were
loaded into a temporary table with no indices using the "COPY" command.
This temporary table was then appended to the HEADER table, which "ad a
structure of HASH and secondary indices on MID SID (HASH) and TIME (ISAM).
The secondary indices were deleted, and a test was then performed to modify
the table, first from HAL to HEAP, then HEAP to ISAM, then ISAM to HASH,
then HASH to HEAP and finally HEAP to HASH.

The results of the loads are shown below, as reported in the VAX
account log. All results include the job and the detached process which
INGRES creates. In all statistics reported, the conrnact time, direct I/0
and page faults reported is the larger of each of those for the job and
detached process while the CPU time reported is the sum of the CPU times
for the job and the detached process.

4-41

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES LOAD RESULTS

Load Records Average Total | Total | Total Total

Method Loaded Insertion {Connect] CPU Direct | Page
Rate Time Time 1/0's Faults
(Hdrs/Sec)| {Sec) | (Sec)

COPY into 0-50K 27.0 1,849.f 1,350.| 14,606. 515.
HEADER table 50-10CK 26.3 1,904,.1 1,344, 14,608. 513.
without keys

REPEAT APPEND

into HEADER

table without | 72 Records

keys 10 Times 3.8 188. 76.] 1,667. 924,
TEMPORARY

TABLE* 100-101K .55 1,306. 789.| 32,286.| 1,212.

* Load to temporary table without keys, then append temporary table to
HEADER table with keys.

The variation in results among methods is very significant. While the
“REPEAT APPEND" and "TEMPORARY TABLE" methods may be suitable for small
loads, it is obvious that use of the "COPY" command is by far the most
suitable for large amount. of data. There was a small difference between
the 0-50 and 50-100 results, but the 3% difference should not be regarded
as evidence that the load procedure was beginning to degrade.

Because it is much more efficient to create indices on data base
tables after the data is loaded, this is the procedure that was used in the
testing. Mostly as a guide to what kinds of performance might be expected
in creating indices, the results for both ISAM and HASH are included here,
as reported in the VAX account log. It should be -emembered that prior to
loading the second 50,000 records, all indices were deleted, so the results
listed for 100,000 records are for all of the 100,000, not just the last
50,000 records. The results include creating indices on the concatenated
primary key field (modifying the table), the MID_SID field, and the TIME
field.

4-42

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES CREATE INDEX RESULTS

Index| No. ¢f Records Total Total Total Tetal
Type | in Data Base Connect CPy Direct Page
Time Time 1/0's Faults
(S=c) (Sec)
ISAM 50,000 3,383, 1,712, 61,145, 2,567.
100,000 7,224, 3,669. 129,068. 2,4717.
HASH 50,000 5,269, 2,738, 108,434, 3,431.
100,000 10,812, 5,874. 224,208. 3,683.

The time INGRES takes to create indices did not seem to depend on the

numbei: of records in the data base. While, in using each method, the rate
was slower in the larger data base, the change in rate was small and should
not be considered very significant. On the contrary, the difference ir
rates between the HASH and ISAM was very significant. This should just be
noted, however, because the type of query to be performed on the data base
should be the main determining factor over which type of index is created.
The time necessary to create the index would usually be of lesser
importance. As stated previously, the rates were shown here as examples of

what the user might expect.

The results of all queries are shown on the following page. The table
should be self explanatory as the index type, query, and other information
needed to distinguish each query appear in the table along with the
results. All results were obtained from the VAX accounting file.

The results cf query 1 show that, as expected, the HASH method was
superior in retrieving a single record on an exact match. The result of
the query executed when the structure of the data base was HEAP is included
to show that on a data base with a large number of records, some structure
is necessary in order that retrieval time is in an acceptable range. A

retrieval time of almost 5 minutes for one record would not be acceptable
to most users.

4-43

BUSINESS AND TECHVOLOGICAL SYSTENMS, INC

*6SL]°GEl 't °L L ‘89 I 000 ‘00T
‘82L]SS ‘6 *9¢ ¢S ‘89 g 000 ‘0§ HSVH G6£21-<0IS GIW ONV
‘618 |°694 ‘6 *2e 1A *89 S 000001 +90TTECT8L =3WIL FUIHM
‘€18 [°68S ‘6 ‘12 2y 89 S 000 °0S WYSI| (17v°¥30v3H) 3A31¥13Y
*29L |°sie‘62 *26¢ ‘088 ‘088 *810°02 1 000°00T
‘L6 ‘108 “LE *22S *691°1 G°v89 *610°01 c 001 ‘0% HSYH +00010T008,>3WIL
*208 |°640°T 08 €L 9°v1 ‘81002 S 000 ‘00T >,000101084, 3Y¥IHM
008 |°¢8S ‘L2 *0p 0°8 *610°01 § 000°0S | WySI| (11v°¥3QV3H) 3A3T¥L3Y
‘G181 |"0vN‘61 144 *060°1 S S ‘gegie- 02 000001
DR D AAS *69¢ *£09 2°0¢ *[99°1= 02 000°0§ HSVH
"T1L€°T]°605°8 ‘829 *GE6 8°9t ‘geeE~ 0¢ 000 ‘001 T = QIS Ik 3JY3IHM
) R 8 440 ‘gl *80% v°02 (991" 02 000°0S | WVSI] (17v°"¥3Qv3H) 3A31413¥

| °09L 1°6E1‘11 ‘phl 962 *96¢ 1 1 000°001 | dV3H
*820°1|°2L9 7 ‘Gt 9t° ¢ 0se 000°001 —. WL aNY
‘Sv6 1°029 ‘9 LIt AN 1 052 000°0S HSVH —: |mom ma«
‘ve6 | °98(‘18 ‘8el 6G° 1 1174 000°00T = QIS omz ELELT
*0v0°T{ €L ‘18 ‘821 1G6° I 0S¢ _ 000 ‘06 WYySI| (17v°¥3av3H) 3A3IY¥L3Y

(23s (298 (298S uoj3ndax3y | paanoax aseq

si|ne4 $,0/1 wl CIM auw yoe3y Jo4 AJd ejeg uj
abed uuvgwa :aw 328Uu0) omco S3Y mmmcoamox saujl | spJO23y ELYY p
{e3ol {R30] 1e3og LR30}4 abedaay 40 *ON 30 *ON JO *ON |xapul Jand

SLINS3¥ AY3IND SIUINI

4-44

BUSIVESS AND TECHNOLOGICAL SYSTEMS, INC

In the second query, even though the match was an exact one, many
records satisfied the match. In this case, the ISAM structure proved to be
superior to HASH., When the table is declared as ISAM in INGRES, the
records are sorted on the ISAM field. A B-tree is also created. There-
fore, all records satisfying the match can be retrieved more quickly. In
the HASH method, the HASH must be performed to retrieve each record.
Whereas the difference in CPY time between the two methods is about 17%,
the number of direct 1/0 operations is significantly higher under the HASH
structure.

In query 3, the ISAM structure was far superior than the HASH. Any
time 2 range is given as the criteria for retrieval, the ISAM structure
should be used. When a table is stored as HASH and a range query is per-
formed, the HASH cannot be taken advantage of. A sequential search must be
performed to retrieve all rows which satisfy the range.

In the fourth query, where a range and an exact match appeared, the
ISAM structure proved to be slightly better than the HASH. Perhaps the
query should have been executed more times to get a better handle on how
much better the ISAM structure was. Both the MID_SID and TIME fields had
secondary indices of ISAM on them. While an ISAM index is best for ranges,
it still performs well for an exact match. The same is not true for HASH,
as was seen in query 3. HASH performs well on exact matches but not on
ranges.

in all the query results discussed above, the size ¢f the data base
did not impact the performance significantly. This would not be the case,
however, in a HEAP structure. In that case, the size of the data base
would be the most important factor in query performance.

The results of deleting the secondary indices, MID_SID and TIME, and
modifying the table to HEAP from a HASH on the primary key are given in the
table below at the 50,000 re.ord level and at the 100,000 record level.
These results were obtained from the VAX accounting log.,

4-45

BUSINESS AND TECHNOLOGICAL SYSTENS, INC.

INGRES DELETE INDEX RESULTS

Index No. of Records Total Total Total Total
in Data Base Connect chu Direct Page
Time Time 1/0's Faults
(Sec) (Sec)
}.—_._.
KID 3 D 50,000 6. 3. 41, 447,
34,13 50,000 6. 3. a5, 484 .
Primery Key 50,000 812, 173. 25,075. 533.
MIQ SID 160,000 5. 3. 45, 488.
TIME 100,000 5. 3. 4]. 451,
Prima 'y Key 100,000 1,638, 354. 51,993. 534,

Wen a command is issued to "DELETE" a secondary index, the rows are
deleted from the index, which is itself a table. The index (table) is not
actually dropped until a "MODIFY" is executed on the primary tabie.

The performance of the "MODIFY" was not degraded by a larger number of
reccrds in the data base. When there were twice as many records present,
the 'MODIFY" took twice as long.

The ¥inal test which was performed on the large data base was to
modify the structure of tne data base table to attempt to determine the
kind of performance a user might expect in doing so in a real situation.

In the test, there were 100,000 records in the table. Initially, the table
was definec as HAS!' 0. the four fields which make up the primary key (MID
SID, SSC, SDF, and 1IME). It was "MODIFY"ed first to HEAP, then from HEAP
to ISAM, then “S~M to HASH, HASH to HEAP, and finally HEAP to HASH., All
results ar< shown below as reported in the VAX account log.

4-46

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES MODIFY RESULTS

Modify Total Total Total Total
Connect Time CPU Time Direct 1/0's | Page Faults
(Sec) (Sec)
HASH to HEAP 1,690, 364. 52,257. 540.
HEAP to ISAM 3,358. i,517. 88,323. 837.
ISAM to HASH 4,327, 1,611. 130,184, 813.
HASH to HEAP 1,626. 350. 52,295. 505.
HEAP to HASH 4,072. 1,480. 128,792. j72.

In a MODIFY to HEAP, the structure is removed from the table, but no
reordering is performed on the records, so modifying to HEAP appears as th2
quickest in the above table. In modifying from HEAP to ISAM, the rows must
be scrted. This is accomplished by the use of temporary tables. In
modifying from HEAP to HASH, the location of each record is determined by
the use of an INGRES hashing algorithm, which appears to take longer than
sorting for the ISAM structure. In modifying from ISAM to HASH, thc same
algorithm must be performed for determining the placement of each record.

While the times vary greatly between the three structures, the main
concern would not usually be the performance of the "MODIFY", but instead
the performance of querying or updating the table.
only as an aid to the user,

The results were given

4.3 Basic Load and Query

Using the PCDB application as described in Appendix Il of this report,
a basic data base load and query were performed. The test was conducted
using ORACLE ..3, ORACLE 3.0, SEET C.0, INGRES 1.3 and INGRES 1.4.

Input records in the PCDB application were divided into 4 types - tape
level, file level, item level, and cat level. There were 55 tape level
records, 13,501 file Tevel records, 20 item level records, and 55 cat level
records, for a total of 13,631 input records.

4-47

BUSINESS 48D TECHNOLOGICAL SYSTEMS, INC

A1l tests conducted in this section were run in a standalone
environment.

ORACLE Version 2.3.2 Results

The ORACLE data base design is discussed in Appendix II of this
report. The 13,631 input records were stored in 5 tables.

The results of loading the data base are given here. All results
include the detached process as well as the job, as obtained from the VAX

accounting file.

ORACLE LOAD RESULTS

Average Total Total Total Total Total

Insertion Rate|Connect Time{ CPU Time Direct | Buffered Page
(Hdrs/Sec) (Sec) (Sec) 1/0's 1/0's Faults
2.74 4,976, 3,037.24 | 13,529. 65,621. 28,666.

The query which was executed against the data base was:

SELECT CAT, CATEGORY, FUNCTION, FILE.FILENUM, FLSTART, FLSTOP,
FLFIRSTORB, FLLASTORB, FLLEN

FROM FILE, CAT

WHERE FILE.TAPEID = CAT,TAPEID AND
[CAT.FILENUM = FILE.FILENUM OR CAT.FILENUM = NULL] AND
FILE.NUMITEMS = 0 AND
CAT = <'OZONE'> AND
[FLSTART <="710401000000"' AND FLSTOP> = '700801000000'] AND
FILE.TAPEID =<'DPFLO001", 'DPFLO002',, 'DPFLO016'>;

A total of 2,796 rows were retrieved from the data base. The results
appear in the following table, as obtained from the VAX accounting file,

4-48

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

ORACLE QUERY RESULTS

Average Total Total Total Total Total

Response Time }Connect Time | CPU Time | Direct | Buffered | Page
(Sec) (Sec) (Sec) 1/0's 1/0's Faults
177 494, 392.57 4,260, 5,737. 1,829.

ORACLE Version 3.0 Results

The PCDB application is described fully in Appendix II of this
report. A brief description of the data base design will be given here.
Five tables were designed to hold the PCDB data - the TAPE table, FLE
table (the term FLE was used because FILE is an ORACLE reserved word), ITEM
table, CAT table, and ITEM DESCR table. Because in the PCDB application,
the query response rate was of more importance than the load rate, testing
was concentrated in that area. However, for the purpose of comparing
ORACLE's data base load rate with that of other DBMSs, the results will be
given here. There were 13,621 input data records - 55 tape level, 13,501
file level, 55 cat level, and 20 item level records. After the data base
was loaded, there were 55 TAPE records, 13,501 FLE records, 20 ITEM
records, 55 CAT records and 20 ITEM DESCR records.

A summary of the loading results appears below, as reported in the VAX
ac-.,unting log.

ORACLE LOAD RESULTS

Average Total Total Total Total Total

Insertion Rate |lonnect Time | CPU Time | Direct | Buffered | Page
(Hdrs/Sec) (Sec) (Sec) 1/0's 1/0's Faults
4.68 2,914, 2,442, 12,225. 137. 57,4812,

4-49

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

Because, at the time of writing of this document, the ORACLE 3.0 query
optimization was not complete, those results do not appear here.

SEED Version C.00.03 Results

SEED Version C.0 was alco tested using the PCDB application described
in Appendix II. Whereas the load rates were the major concern in the
PMS-like application, query rates were given higher priority in the PCDB
application. First, a data base was loaded. There were 55 input tape
records, 13,501 file records, 20 item records and 55 cat records. While
the load rates are not of great concern, the load statistics will be given
here as reported in the VAX accounting file. Their usefulness may be more
in trair comparison with other data base management system results, rather
than in the statistics themselves.

SEED LOAD RESULTS

Average Total Total Total Total Total
Insertion Rate |Connect Time | CPU Time | Direct | Buffered | Page

(Hdrs/Sec) (Sec) (Sec) I/0's 1/0's Faults
9.05 1,507, 1,326. 2,088, 109, 643.

Next, a query was performed on the data base. The query was complex,
making it necessary to navigate a large portion of the data base. The code
which performed the query is shown on the following page. A comparison of
the code and the data base schema represented in Figure II.1 shows the
navigation which took place in the query. In the query, all unique
combinations of CAT, CATEGORY, FUNCTION, FILENUM, FLSTART, FLSTOP,
FLFIRSTORB, FLLASTORB, and FLLEN were retrieved where the CAT was 'OZONE',
the TAPEID was 'DPFLO0OOLl', 'DPFL0002', ... or 'DPFLO016', the file start
time was less than or equal to '710401000000', the file stop time was
greater than or equal to '700801000000', and there were no items present in
the file.

4-50

PARAMETER DSPLY=6

INCLUDE 'DBA1:[DBMSTEST.SEEDPCDB]PCDBF .WRK'

CHARACTER TAPES(16)*15,START*13,STOP*13

INTEGER*2 NUMCATS

INTEGER*4 START_CONNECT,STOP_CONNECT,CONNECT

INTEGER*4 STAPT CPU,STOP CPU,CPU

INTEGER*4 START DIRIO,STOP DIRIO,DIRIO

INTEGER*4 START PGFLTS,STOF PGFLTS,PGFLTS

DATA TAPES/'DPFL0001','DPFLO002"','DPFL0O003', 'DPFL0O004",

1 ‘DPFL0O005 ', ‘DPFLO006', 'DPFLN007 ', ‘DPFLO008",
2 'DPFLO009Y"', 'DPFLO010", 'DPFLGO11", 'DPFLOO12",
3 'DPFLO013*, 'DPFLO014", 'DPFLOO1S', 'DPFLO016" /

DATA START/'710401000000*/,STOP/* 700801000000 /
CALL TIMERS(START CONNECT,START CPU,START DIRIO,START PGFLTS)
CALL INIT(DSPLY) - -
KOUNT=0
ERRSTA=0
CAT="0ZONE "
CALL OBTNC(R4 CAT,'FIRST')
IF (ERRSTA.NE.D)CALL ERROR(DSPLY)
DO 20 I=1,16
TAPEID=TAPES(I)
CALL OBTNC(R5_TAPE,'FIRST')
IF(ERRSTA.NE.O)CALL ERROR(DSPLY)
CALL OBTNPO('FIRST',S4 6)

5 IF(ERRSTALEQ.0307) THEN
ERRSTA=0
GO TO 10
ENDIF

IF(ERRSTA,NE.O)CALL ERROR(DSPLY)
CALL OBTN(R7 LINK TAPE_CAT,'FIRST')
IF (ERRSTA,EQ, 0326 THEN

ERRSTA=0
CALL OBTNPO{'NEXT',S4 6)
GO TO 5 -
ENDIF
IF (ERRSTA.NE.O)CALL CRROR(DSPLY)
6 CALL OBTNPO('NEXT',S5 10)
IF (ERRSTA.EQ.U307) THEN
ERRSTA=0
GO TO 10
ENDIF

IF (ERRSTA.NE.O)CALL ERROR(DSPLY)
IF (NUMITEMS.NE.D)GO TO 6
IF(FLSTART.GT.START)GO TO 6
IF(FLSTOP.LT.STOP)GO TO 6
NUMCATS=CNTMEM(S5_7)
IF (NUMCATS.GT.1) THEN
CALL OBTN(R15 LINK FILE CAT,'FIRST')
IF (ERRSTA.E0.0326) THEN ~
ERRSTA=0
GO TO 6
ENDIF
ENDIF
IF (ERRSTA.NE.O)CALL ERROR(DSPLY)
KOUNT=KOUNT+1
GO TO 6
10 CONTINUE
20 CONTINUE
CALL TIMERS(STOP_CONNECT,STOP_CPU,STOP_DIRIO,STOP_PGFLTS)

4-51

BUSINESS AND TECHNOLOGICAL SYSTEMS, & ..

The query was submitted two times, with 2,796 responses to the query
each time. The results of the two queries are given in the table below.
The statistics are from the VAX accounting file,

SEED QUERY RESULTS

Query|Average [% Degradation| Total Total | Total| Total | Total
Job |Response| in Average |Connect | CPu Direct{Buffered| Page
Time Response Time Time 1/0's|] 1/0's | Faults
(Sec) Time (Sec) (Sec)
1 .020 - 56 .86 48,29 240 51 238
2 .022 + 10.0 61.56 50.09 240 51 238

There is a 10% difference in average response time between the two
runs but only a 3.7% difference in CPU time between the two. Because the
number of direct 1/0's and page faults are identical between the two runs,
an explanation for the variation might be the presence of an outside
process in the system,or just operating system variation.

INGRES Version 1.3 Results

In the PCDB application, the data base was first loaded with 13,631
..cords into five tables. The tables are described further in Appendix
11, There were 55 tape records, -.3,501 file records, 20 item records, and
55 cat records. While the load statistics are of lesser importance in this
application than in the PMS-1ike application, they will nonetheless be
given here for comparison with the other DBMSs and with a newer version of
the same DBMS. All results include the detached process as well as the
job, as obtained from the VAX accounting file. The two methods of loading,
copy and repeat append, are discussed in Section 3.2.1.3.4 of this report.
The statistics are repeated here for purposes of comparison.

4-52

BUSINESS <ND TECHNOLOGICAL SYSTEMS, INC.

INGRES LOAD RESULTS

fype Average Total Total Total Total Total
of Insertion | Connect | CPU Direct Buffered| Page
Load Rate Time Time I/0's 1/0's Faults
(Hdrs/Sec)! {Sec) (Sec?
Repeat
Append 3.3 4,105, 1,716. | 30,511. | 97,116. | 4,340,
Copy 31.6 431, 324. 3,122, 1,451. 514,

The query which was performed against the data base was:

RANGE OF
RETRIEVE

WHERE

The resu

F IS FILE, C IS CAT

(C.CAT, C.CATEGORY, C.FUNCTION, F.FILENUM, F.FLSTART,
F.FLSTOP, F.FLFIRSTORB, F.FLLASTORB, F.FLLEN)

F.TAPEID = C.TAPEID AND

(C.FILENUM = F,FILENUM OR C.FILENUM = 0) AND

F.NUMITEMS = G AND

C.CAT = 'OZONE' AND

(F.FLSTART <='710401000000' AND F.FLSTOP >='700801000000') AND
F.TAPEID = 'DPFL*'

1ts of the query are showr below. There were 2,796 rows which

satisfied the query and were retrieved. The statistics are reported from

the VAX account file and include statistics for both the host process and

the detached process.
INGRES QUERY RESULTS
Average Total Total Total Total Total
Response Time { Connect Time | CPU Time | Direct | Buffered | Page
(Sec) (Sec) (Sec) 1/0's 1/0's Faults
.053 148, 92. 2,189, 4,588, 1,205.

4-53

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

INGRES Version 1.4 Results

The data base design used in this testing was identical to that used

in the INGPES 1.3 testing discussed prior to this and reported in Appendix
1.

The data base was loaded using only the copy method and those results

appear, as reported in the VAX account log, below.

INGRES LOAD RESULTS

Average Total Total Total Total Total

Insertion Rate | Connect Time § CPU Time Direct Buffered | Page
(Hdrs/Sec) (Sec) (Sec) 1/0's 1/0's Faults

31.9 427, 327. 3,121, 1,451, 570.

The query which was executed was identical to that given for the

INGRES 1.3 testing just prior to this.

reported in the VAX accounting log.

INGRES QUERY RESULTS

The results are given here as

Average Total Total Total] Total Total

Response Time| Connect Time | CPU Time Direct Buffered | Page
(Sec) (Sec) (Sec) 1/0°s 1/0's Faults
.054 151, 9, 2,177. 4,538, 1,240.

4-54

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

4,4 Predicate Reordering

A test was conducted to determine whether the order of the various
parts of the where clause in a complex query had an impact on the rate of
retrieval. This test was run using the ORACLE 2.3 DBMS and the INGRES 1.4
DBMS and the PCDB application was used a. the testbed. This application is
described in detail in Appendix II.

ORACLE Version 2.3.2 Results

A PCDB data base was loaded with 13,631 input records into 5 tables.
The ORACLE data base design is discussed in Appendix II. A test was
conducted to determir~ the effect on query rates of varying the order of
the different parts of the where clause.

The number of successful responses returned was governed by
restricting the time range in the query. Two ranges were employed in the
testing. The first, FLSTART<='710401000000' and FLSTOP >= *'700801000000',
eliminated about half of the possible responses for a total of 2,796 rows,
and the second, FLSTART <= '710201000CCC' and FLSTOP >= '701001000000°,
eliminated about three fourths of the possible responses, yielding 1,412
rows.

The basic query is show. here, with the numbers to the left
designating the various phrases of ""» where clause.

SELECT CAT, CATEGORY, FUNCTION, FILE.FILENUM, FLSTART, FLSTOP,
FLFIRSTORB, FLLASTORB, FLLEN
FROM FILE, CAT

1) WHERE FILE.TAPEID=CAT.TAPEID AND

2) [CAT.FILENUM=FILE.FILENUM OR CAT.FILENUM=NULL] AND

3) FILE.NUMITEMS=0 AND

4) CAT=<'0ZONE'> AND

5) [FLSTARTC="=ceccmcccnae " AND FLSTOP>='-cocrocoaaan ‘] AND
6) FILE.TAPE1D=<'DPFLO001', ‘DPFLO002',, 'DPFL0O016'>;

4-55

BUSINESS VD TECHNOLOGICAL SYSTEMS, INC

For each time range the query was submitted four times. I~ the first
job, tihe query appeared as is shown above,
CAT=<'0ZONE'> phrase was moved to the end. 1In the third, the table joins,
1 and 2 , were moved to the end, and in the final test, the

tape qualifier phrase, 6

In the second, the

phrases
, was moved to the beginning.

Tables giving the results of the four variations for time range 1 and
2, respectively, are given below. The results include the statistics for
the job itsel¥ and the detached process, as reported in the VAX account

file.

JRACLE QUERY RESULTS - 2,796 Rows Retrieved

Where Clause| Average |[% Degradation Total Total Total
Ordering Response over Connect cPy Direct
Time Best Results Time Time 1/0's
(Sec) Sec) (Sec)
1,2,3,4,5,6 177 + 1.7 494, 392.57 4,260.
1,2,3,5,6,4 .183 + 5.2 511. 432,38 1,766.
3,4,5,6,1,2 .174 -—- 487. 381.72 4,260.
6,1,2,3,4,5 .181 + 4.0 506. 430.52 1,772.
ORACLE QUERY RESULTS - 1,412 Rows Retrieved
Where Clause| Average !% Degradation Total Total Total
Orderirg Response over Connect CpPu Direct
Time Best Results Time Time 1/0's
(Sec) (Sec) (Sec)
1,2,3,4,5,6 .320 + 1.9 452, 354.77 4,261,
1,2,3,5,6,4 .330 + 5.1 466. 393.79 1,771,
3,4,5,6,1,2 .314 -——- 444, 344.40 4,261.
6,1,2,3,4,5 .335 + 6.7 473, 402.45 1,771.

There is about 2 5-6% difference betweer
While the algorithm useu by the ORACLF NBMS far
parsing the query is not known, it is important to no’

time in each table.

4-56

“he best and worst connect

. ;tions in

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

query response time d¢ result from reorganizing the where clause. A more
detailed discussion of parsing logic can be found in the INGRES Version 1.4
testing which fol'ow:.,

It should be ncted here that in each table, the total CPU time and
total number of direct 1/0's are much lower for the first and third entries
than the second and fourth. In the first and third entries, phrase 4
(CAT=<'0ZONE'>) appears before phrase 6 (FILE.TAPEID=C'DPFLOOO1',...,
'‘DPFLO016'>). In the other two entries, phrase 6 appears before phrase 4.
Two statements may be made about this. First, the CAT table has far fewer
rcws than the FILE tabie. Second, the "=" is on a single value in phrase 4
and is on a group of 16 values in phrase 6., It seems plausible that ORACLE
might prefer to select on phrase 4 before phrase 6.

INGRES Version 1.4 Results

A test was run to determine whether the order of the various parts of
the where clause in a complex query had an impact on the rate of
retrieval. These tests employed the newer INGRES Version 1.4.

For this test, a PCDB application was used, where the data base
contained 13,631 records stored in five tables (see Appendix I11). The
query that was executed follows, with the numbers to the left cf tne query
signifying the various predicates in *the where ciause.

RANGE OF F IS FILE, C IS CAT

RETRIEVE (C.CAT, C.CATEGORY, C.FUNCTION, F.FILENUM, F.FLSTART,
F.FLSTOP, F.FLFIRSTORB, F.FLLASTORB, r . FLLEN) WHERE
F.TAPEID=C.TAPEID AND
(C.FILENUM=F .FILENUM OR C.FILENUM=0) AND
F.NUMITEMS=0 AND
C.CAT="0ZONE"' AND
(F JFLSTART<="710401000000't AND F.FLSTOP>='70080100C000"') AND
F.TAPEID="DPFL*'

O O BwWw N
— e et e e e

TUsing this time range, 2,796 rows were retrieved. A second set of runs
was made using '710201000000' and '701G01000000' for FLSTART and FLSTOP,
respectively. Using this time range, 1,412 rows were retrieved.

4-57

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

in the two tables below, the results are shown from guerying the PCDB
data base where the ordering of the predicates in the where clause was
varied. The first table shows the results using the first set of values
for FLSTART and FLSTOP, and the second table reports the results using the
second, more restrictive, set of vaiues for FLSTART and FLS7OP.
table, the results of four queries are reported using statistics from the
VAX accounting file.

In each

In the first, the where clause was ordered as Shown
In the second, the C.CAT="0ZONE' clauce was moved to
the end of the where clause. In the third, clauses one and two
(F.TAPEID=C.TAPEID and (C.FILENUM=F . FILENUM OR C.FILENUM=0)) were moved to
the end of the where clause. In the final query, the match for tapeid
(F.TAPEID="DPFL*') was inserted as the first part of the where clause. In
all queries, the FILE table was defined as 'ISAM' on TAPEID and FILENUM and
the CAT table was defined as 'hash' on TAPEID, FILENUM, ITEM, and CAT.
There were no secondary indices created.

in the quary above.

INGRES QUERY RESULTS

Ordering of Average % Degradation Total Total
Where Clause Response Time ir Average Connect CpPU
(Sec) Response Time Time Time

(Sec) (Sec)

1,2,3,4,5,6 .054 -—- 151. 94,19

1,2,3,5,6,4 .053 - 1.9 149, 93.68

3,4,5,6,1,2 .053 - 1.9 149, 92.74

6,1,2,3,4,5 .053 - 1.9 147. 90.82

INGRES QUERY RESULTS

Ordering of Average % Dearadation Totatl Total
Where Clause Response Time in Average Connect cPy
(Sec) Respcnse Time Time 1ime

(Sec) (Sec)

1,2,3,4,5,6 .066 r— 93. 57.30
1,2,3,5,6,4 063 - 3.0 90. 54.52
3,4’5’6,1’2 0063 - 4.5 89o 54.15
6,1,2,3,4,5 062 - 6.1 88. 52.74

4-58

BUSINESS AND TECHVOLOGICAL SYSTENMS, INC.

The difference in connect time and CPU time which appears with the
same pattern between the two tables suggests that the query optimization
that takes place on an INGRES query is somewhat dependent on the structure
of the where clause. A few examples of how where clause structure might
affect performance are given here.

When a complex where clause is specified that performs a join on two
(or more) tables, the DBMS must choose one of the tables to begin selection
on. Some possibilities of criteria for this selection might be table sizes
or the number of pieces of the where clause involved with each table. If
the DBMS does not kzep statistics about each table (e.g., table size), the
selection may be a random one.

Once a table has been chosen to begin selection on, the where clause
is parsed for those pieces of the where clause concerning the selected
table. The DBMS optimization algorithm specifies a general ordering for
solving pieces of the where clause. That is, the first thing the parser
might look for is a piece of the where clause specifying the value of the
primary key. Next, it might look for a piece specifying the value of a
secondary key. After that it might look for a piece where an '=' is
specified on a non-indexed field, fclinwed by a clause where a *>' or '<¢'
is specified. A simpic example of how performance might be affected by
this follows. Suppcse the query reads:

RETRIEVE (A.ALL)
WHERE A.SEX='MALE'
AND A.COLOR='BLUE'

The fiela A.SEX can take on one of two values, 'MALE' or 'FEMALE',
where the field of A.COLOR can take on many valves. Therefore, in a given
table, there are probably more duplicates in the SEX field than in the
COLOR field. If the parser reads the first qualification and satisfies it
first, in a table of 100 rows, 50 rows may be retrieved. Then, in applying
the second qualification, if there are 10 colors, 5 rows may be retrieved,
If, however, the parser reads and remembers the last qualification first,
10 rows may be retrieved by COLOR, followed by 5 rows retrieved by SEX,

459

BUSINESS 43D TECHNOLOGE AL SYSTEMS, INC

“he point to be made is that query optimization does exist. wWhile the
test conducted in this section did not show a wide variation in query
performance due to where clause restructuring, the user should be aware of
the fact that variation does exist. A good knowledge of the data in the
data base and of the types of information most frequently requested from
the data base can help the data base designer determine which fields to
index. Testing variations in the where clause structuring may aid in
improving data base query perfermanre.

4.5 Effect of Ordering the Output from a Query

It 1s cometimes desirable to retrieve the resuits of a query in a
predeterminad order. This ordering of results may, however, affect the
response time of the query. It is not uncommon for the DBMS to employ
temporary tables to use for sorting the responses to a query.

A test was corducted to determire the extent of degradation in
response time for various "sort" fields. Testing was corducted using the

ORACLE 2.3 and INGRES 1.4 DBMSs.

ORACLE Version 2.3.2 Results

Using the PCDB application with 13,631 input records stored in the
data base in 5 tables, a test was conducted to determine the impact of an
'ORDER BY' clause in th:z response time cf a complex query.

The query which was executed was:

SELECT CAT, FORMAT, CATEGORY, FUNCTION, TAPC.TAPEID, FILE.FILENUM,
FLSTART, FLSTOP, FLFIRSTORB, FLLASTORB, FLLEN

FROM TAPE, FILE, CAT

WHERE TAPE,TAPEID=CAT.TAPEID AND CAT.TAPSID=FILE.TAPEID AND
[CAT FILENUM=FILE FILENUM OR CAT.FILENUM=NULL] AND
FILE.NUMITEMS=0 AND
[FLSTART<="'900000000000"' AND FLSTOP>='700000000000'] AND
TAPE.TAPEID=

SELECT TAPEID FROM TAPE WHERE FORMAT='DPFL' AND
[TPSTART<="200000000000"' AND TPSTOP>='700000000000'7;

4-60

BI~INESs 13D TECHNOLOGICAL SYSTEMS, INC.

A1l results are shown bDelow and include both the job and detached
nrocess, as reported in the VAX account log.

ORACLE QUERY RESULTS - 5,185 Rows Retrieved

ORDER BY Average % Total | TotaijTotal | Total (Total
Response|Degradation jConnect| CPU |Direct{Buffered{Page
Time in Average | Time Time {1/0's | 1/0's ({Faults
(Sec) Response (Sec) { (Sec)
Time
No ORDER BY .058 -—- 300, j240.76(1,814.(20,997. {2,062,
CAT, FLSTART .138 + 137.9 718, |478.6915,394,121,745, 2,077,
§CAT,
FUNCTION,
FLSTART .140 + 141.4 724, |486.0215,399.121,773. |2,371.
CATEGORY,
\ FUNCTION,
1 FLSTART .148 + 155.2 766, {513.3015,689.121,836. }2,371.
CAT, CATEGORY,
FUNCTION,
FLSTART .151 + 160.2 783. {525.26}5,704,.:21,863, 2,271,

The presence of an 'ORDER BY' ciause more than doubled the query
respense time. Any time a sort is invoked, the CPU time and the number of
i/0 operations increases because of the shuffling of rows. As the 'ORDER
BY' clause becomes more compiex, the response time increases ever more. It
should be noted that in the test run here, the CATEGORY field is
CHARACTER*30, the FUNCTION field is CHARACTER*5G, CAT is CHARACTER*5, and
FLSTART is CHARACTER*12,

INGRES Version 1.4 Results

Another important feature of gquerying that was tested was the effect of
a specified ordering in the rows that were retrieved by a query. The query
ysed in this testing was identical %o one variation of the cuery used in
the previous testing {Predicate Reordering) and is shown bhelow. Also, as
in the previous testing, INGRES Version 1.4 was used,

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

RANGE OF F IS FILE, C IS CAT

RETRIEVE (C.CAT, C.CATEGORY, C.FUNCTION, F.FILENUM, F.FLSTART, F.FLSTOP,
F.FLFIRSTORB, F.FLLASTORB, F.FLLEN) WHERE
F.TAPEID="DPFL*' AND
F.TAPEID=C,TAPEID AND
(C.FILENUM=F.FILENUM OR C.FILENUM=0) AND
F.NUMITEMS=0 AND
C.CAT="CZONE' AND
(F.FLSTART<="'710401000000' AND F.FLSTOP>='700801000000")

In this testing, as in the previous testing, a second set of times
(FLSTART<="'710201000000' AND FLSTOP>='701001000000') were also tested.
test was run once for each set of times with no ordering of the output and

once with an ordering by CAT, CATEGORY, and FLSTART,

When more thar one

column is specified for scrting, the results are sorted first by the
leftmost column specified (i.e., CAT), then by CATEGORY and finally by
FLSTART. In this testing there was no structure on the data base tables

(i.e., 'heap').

the effect of the 'SORT BY' clause than if the tables were structured.
table which follows reports the results of the first and second set of times,

respectively, from the VAX account lecg.

The

It was t{hought that this would give a truer representation of
The

INGRES QUERY RESULTS
Time| SORT BY Average Total | Total |Total | Total |Total
Response|% Degradation{Connect| CPU |[Direct|BufferedjPage
Time in Average Time Time [1/0's 1/0's |Faults
(Sec) |Response Vime{ (Sec) | (Sec)
1 |{No SORT BY; .060 -——— 169. | 106.01]2,773 4,588 | 1,234
CAT,
CATEGORY,
FLSTART 113 + 88.3 317. | 175.04(6,314 5,806 | 1,650
2 {No SORT BY| .079 -— 112. 67.18[2,022 2,401 | 1,230
Sort by
CAT,
CATEGORY,
FLSTART .128 + 62.0 181. 97.77(3,655 3,011 | 1,555

4-62

BUSINESS AND TECHNOLUGICAL SYSTEMS, INC

The addition of the ‘SORT BY' clause has a severe impact on query
performance. This is to be expected, especially for retrieval of large
numbers of rows where the sort key is more than one field. INGRES
accomplishes the sort by use of temporary tables created during the run and
deleted at the end of the run. When a sort key is introduced, the number
of direct 1/0's, as well as buffered I/0's and page faults, is increased,
as can be seen in the table.

4,6 Nested Queries

The purpose of the test which was performed here was to assess the
impact of query nesting. In this test, a query was created which employed
two levels of nesting and three table joins. In a control run, the two
Tevels were separated into three queries with the results of one being used
in the next. This eliminated the need for "joins" which were inherent in
the nested query. This test was conducted using ORACLE 2.3 only.

ORACLE Version 2.3.2 Results

A test was designed to determine the impact of nested queries on
response time. The PCDB application was used in the testing. The data
base was first loaded with 13,631 input records into five tables. Then,
several queries were executed.

4-63

BUSINESS AVD TECHNOLOGICAL SYSTEMS, INC

The control run queries were structured as follows:

1) SELECT TAPEID, TPSTART, TPSTOP FROM TAPE
WHERE FORMAT = 'DPFL'
AND TPSTART<= '99'
AND TPSTOP>= '00';

2) SELECT CAT, CATEGORY, FUNCTION, FILENUM FROM CAT
WHERE TAPEID = 'DPFL0009'
AND CAT = <'OZONE'>
AND ITEM = NULL;

3) SELECT FLSTART, FLSTOP, FLFIRSTORB, FLLASTORB, FLLEN, FILENUM
FROM FILE
WHERE TAPEID = 'DPFLO009'
AND FLSTART<='99'
AND FLSTOP>='00";

The nested query was structured as:

SELECT CAT, CATEGORY, FUNCTION, TAPE,TAPEID, FILE.FILENUM,
FLSTART, FLSTOP, FLFIRSTORB, FLLASTORB, FLLEN

FROM TAPE, FILE, CAT

WHERE TAPE.TAPEID = CAT.TAPEID AND
TAPE . TAPEID = FILE.TAPEID AND
[CAT.FILENUM=FILE.FILENUM OR CAT.FILENUM=NULL] AND
FILE.NUMITEMS = 0 AND
[FLSTART<='701226"' AND FLSTOP>='701225'] AND
TAPE .TAPEID=

SELECT TAPEID FROM TAPE
WHERE FORMAT = 'DPFL'
AND [TPSTART<='701226"' AND TPSTOP>='701225'];

4-64

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The results of the two tests show that even though a 3 way join was
necessary in the two-level nested query, it was still faster than running
three queries. The results are shown here for both the jobs and detached
processes (as reported in the VAX account file) and should be examined
closely because the total statistics are somewhat misleading.

ORACLE QUERY RESULTS

Type of Query Total Total Total Total Total
Connect Time| CPU Time| Direct Buffered Page

[Sec) (Sec) 1/0's 1/0's Faults

2 Level Job 35, 2.57 32 149 463
Nested Query pp* 29, 18.51 249 141 1,549
3 Separate Job 51, 6.55 36 903 471
Queries pp* 26, 14.16 190 789 976

® Indicates Detached Process

First, it should be noted that when the two level nested query was
executed, 13 rows were returned. When the three separate queries were
executed, 16, 1, and 363 rows were retrieved, respectively, for a total of
380 rows.

Looking at the results of the detached processes (labelled DP above),
which perform the actual ORACLE tasks, the table joins had an obvious
impact on performance. Thirteen rows were retrieved using 18,51 seconds of
CPU time and 29 secnnds of connect time., In the run where the query was
broken down so that no joins were necessary, 380 rows were retrieved using
only 14,16 seconds of CPU time and 26 seconds of connect time. However,
the overhead of running three separate jobs, thus executing the ron-ORACLE
related tasks three times instead of one, was the contributing factor in
the overall performance degradation of that run.

4-65

BuSINESS AND TECHNOLOGICAL SYSTEMS, INC

APPENDIX I

PACKET MANAGEMENT SYSTEM (PMS)
SCHEMAS FOR DATA BASE TESTING

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

PACKET MANATEMENT SYSTEM

The Packet Management System (PMS) is partially intended to
demonstrate the ability to use data base technology to provide various NASA
end users with an improved capability to access data stored centrally in a
packetized manner. The formal design of the data base schema for PMS had
not been determined prior to the performance testing this document
describes. Rather it was intended that results of this testing would be
used as input for some of the decisions required during the formulation of
the PMS schema design. Some preliminary results have, in fact, been
responsible for the alteration of initial designs that were proposed prior
to the start of the performance testing. What has evolved is a marriage of
goals to the end that generic data base testing has proceaded which has
often employed PMS-like data base applications to provide specific fTeedback
to the PMS project to aid in system design considerations. The term
"PMS-1ike" is used throughout the report because the data used in the
testing simulated, but was not, actual PMS data.

The PMS-1ike data base designs used during the testing reflect changes

made by the PMS project staff to the preliminary PMS data base designs.

The designs applied in Section 2 were primarily based on alterations made
to the originally proposed design. Some of the supplemental testing
described in Section 4 employed the original design of the PMS., It was
these test results that prompted the first major design revision to the
proposed data base structure. The PMS data base requirements included the
need to store and manage headers that prefixed information contained in

[-2

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

packets of data. The header information to be managed was initially
defined in the tahle that follows:

PMS HEADER INFORMATION

Field Description Length
SID Source ldentifier 8 bits
MID Mission Identifier 8 bits
SSC Source Sequence Count 16 bits
PL Packet Length 8 bits
SDF Source Data Format 8 bits
SHID |Secondary Header Identifier 8 bits
SIEC |Source ID Error Control 8 bits
TIME |Time 32 bits
PLI Alternative Packet Length 32 bits
TOTAL " 128 bits

In addition, the next 384 bits of the packet were to be included as a
single field (resulting in the DBMS storing the first 512 packet bits).
Also, to facilitate PMS users, a 32 bit field for their UICs and a 63 byte
comment field were to be managed in the data base as well, As a
re.cirement, each packet would be identifiable through a unique value
dirived through the concatenation of the following fields: SID, MID, SSC,
SDF. SIEC and TIME, These fields, when their values are concatenated
together, constitute a primary key that is associated with only one header
in the data base.

I-3

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The basic ORACLE schema employed for this initial specification of PMS
data base needs consisted of a single relation or table. The table had the
following makeup:

ORACLE HEADER TABLZ

Column Name, Description Source
KEY CHAR(10) NONULL Concatenation of 6 fields
SID NUMBER NONULL Packet
MID NUMBER NONULL Packet
SSC NUMBER NONULL Packet
PLP NUMBER NONULL Packet
SOF NUMBER NONULL Packet
SHID NUMBER NONULL Packet
SIEC NUMBER NONtILL Packet
TIME NUMBER NONULL Packet
PLS NUMBER NONULL PLI Field From Packet
SECHDR CHAR(48) NONULL Next 384 b s in Packet
UIC NUMBER User ID Code (Optional)
COMMENT |CHAR(63) User Comment (Optional)

This table formed the baseline from which alternative designs were made for
the supplemental testing of ORACLE Versions 2.3.1 and 2.3.2 summarized in
Section 4 and some of the Level 2 testing described for ORACLE in

Section 3.

The fields that were chosen for imaging (indexing) varied depending on
the test goals, although the KEY field was always imaged since it was a
primary key and ORACLE 2.3 required that at least one field be indexed in a
table.

I-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

The initial design for SEED appears pictorially in Figure l.1 and is
summarized in Table I-1. In the figure, the upper portion of each block
identifies the area name on the left and the calc field or via set on the
right. The lower portion of each box is the record name. The R6_PKEY
record contains the various PMS header fields required to be managed. The
R7_COMMENT record is optionally present for a given P6_PKEY record. The
R1 MID, R2 TIME, R3 IID (SDF), R4 _SID and R5 UIC records provide direct
access to header records through the designation of a value for &
particular owner and the fetching of the corresponding R6 PKEY member
records. As with ORACLE, this baseline schema was altered to test various
designs. During this phase of testing, SEED version B.11.9 was used which
did not have the Pointer Array indexing capability, sc owner-member sets
were the only means for direct access.

After test results had been obtained and reviewed using variations of
the above ccher.ai, the PMS project staff proposed a revision to the PMS
data base design which was adopted for the generic performance testing. In
order to increase ingestion rates, the number of fields was reduced and,
because of project changes, the primary key was redefined. The fields
defined to be managed under the revised PMS needs were:

PMS HEADER INFORMATiON

Field Description Length

MID SIC |A concatenation of Mission]|16 bits
and Source ID's

TIME Time 32 bits

SDF Source Data Format 16 bits

In addition, the entire first 512 bits were required to be treated as a
single field which could be broken apart by PMS software, a primery key
consisting of the MID, SID, T1IME, SSC and SOF fields (no SIEC) would be
needed to uniquely identify a packet, and UIC and MESSAGE (replaced

COMMENT) fields were necessary for end users to identify their packets.

I-5

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SAT

MID

R1_MID

Sl 4

SAT

VIA S1_4

R4_SID

S4 6

SEED SCHEMA REPRESENTATION

SAT [TIME

R2_TIME

S3 6
S2 6

y
PACKS | PKEY!

R6_PKEY

S6 7

\

PACKS |VIA S6_7

R7_COMMENT

Figure I.1

I-6

USER|TID

R3 11D

S35

Us

ER{UIC

RS UIC

S5 6

BuUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

SEED SCHEMA REPRESENTATION

I-7

Record Name Field Name Type

R1_MID MID INTEGER*2

RZ_TIME TIME INTEGER*4

R3 11D IID INTEGER*2

R4_SID SID INTEGER*2

R5 UIC uIC INTEGER*4

R6_PKEY PKEY CHARACTER*10
MIDP INTEGER*2
SIDP INTEGER*2
SSC INTEGER*2
SDF INTEGER*2
SIEC INTEGER*2
TIMEP INTEGER*4
JiCcP INTEGER™4
PL INTEGER*2
SHID INTEGER*2
PLI INTEGER*4
BITS384 CHARACTER*48

R7_COMMENT COMMENT CHARACTER*63
Table I-1

PUSINESS (VD TECHNOLOGICAL SYSTEMS. INC

The ORACLE schema which subsequently evolved to accommodate the
proposed changes is presented in the specification below:

REVISED ORACLE HEADER TABLE

Column Name Description Source

PRIMARY KEY |CHAR(9) NONULL {Concatenation of 5 fields
MID_SID NUMBER NONULL |Concatenation of MID and SID
TIME NUMBER NONULL Packet
UIC NUMBER User 1D Code {Cptional)

SoF NUMBER NONULL Packet
MESSAGE CHAR(31) User Message (Optional)
HEADER CHAR(64) NONULL|{First 512 bits of packet

This design was employed for much of the Level 1 ORACLE testing
described in Section 2. For most of that testing, PRIMARY KEY, MID SID and
TIME were imaged (indexed) fields. The UIC and COMMENT fields were
predominently employed as the variable elements uf the tests summarized in
Section 2. This was also true for the same testing done with SEED and
INGRES, It should be noted that originally ORACLE did not permit the
specification of an index or image for multiple fields unless those fields
were concatenated and stored in the data base in that form. This was why
the PPIMARY_{EY had to be present as a separate field and MID and SID had
to be concatenated. Net until a release of OPACLE Version 3 would such a
capability become available.

The revised SEED schema is summarized in Fiqure 1.2 and Table I-2.
SEED Version C.0 was received in time to be used in the testing with this
baseline schema. It offered the Pointer Array feature (a B-tree direct
access implementation) which was implemented during some of the testing
discussed in Section ?,

I-8

BUSINESS AND TECHNOLOGICAL S

YSTENMS, INC

REVISED SEED SCHEMA REPRESENTATION

R1_MIDSID

S14

R2_TIME R3_SDF
52 4
$3 4
e
R4_PKEY J»
s4 5
1
RS _MESSAGE
Figure 1.2

REVISED SEED SCHEMA REPRESENTATION

Record Name | Field Name Type
R1_MIDSID MIDSID INTEGER*2
R2_TIME TIME INTEGER*4
R3_SDF SDF INTEGER*2
R4_PKEY PKEY CHARACTER*9
MIDSID INTEGER*2
TIME INTEGER*4
SDF INTEGER*2
HEADER CHARACTER*64
uIC INTEGER*4

RS _MESSAGE MESSAGE CHARACTER*31
Table [-2

I-9

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

Testing began con the INGRES data base management system at this time.
Because INGRES employs the use of multifield keys, the following table
structure was derived.

INGRES HEADER TABLE

Column Name|Description Source
MID_SID [*2 Concatenation of MID and SID
SSC I*2 Packet
SDF 1*2 Packet
TIME 1*4 Packet
uIC 1*2 User ID Code !Optional)
MESSAGE CHAR(31) Yser Message (Optional)
HEADER CHAR(64) First 512 bits of packet

The combination of MID SID, SSC, SDF, and TIME formed the multifield
key used to uniquely identify each packet.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

APPENDIX II

PILOT CLIMATE DATA BASE MANAGEMENT SYSTEM (PCDBMS)

SCHEMAS FOR DATA BASE TESTING

I1-1

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

PILOT CLIMATE DATA BASE MANAGEMENT SYSTEM

The Pilot Climate Data Base (PCDB) was developed as a means of
providing on-line catalog, tape inventory, and data access capabilities to
a portion of the scientific community. An initial design was developed and
implemented on the VAX 11/780, Subsequently, because of greater variance
between tapes (i.e., the type of information present on them), and because
of feedback on the “prototype" design, it was determined that a design
change was necessary.

Most of the information presented in this document was obtained from
testing performed using the original design. In that design, there were
four levels of information - a tape level, file level, item level, and cat
level. As the information was read from the tape, the first byte of each
record identified the record as tape, file, item or cat level information.
A description of the data present in each of the four levels of information
is shown in the tables below.

11-2

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

TAPE LEVEL
Length
Field Description (Bytes)

RECORDID Record identification 1
TAPEID Tape ID 15
MISSION Mission name for this satellite 15
SENSOR Sensor equipment name 10
FORMAT Data Format 10
PROJNUM Project sequence number 15
GENDATE Date tape was originally generated 13
INVDATE Date tape was inventoried 9
ARCHIVER Name of person inventorying tape 12
LOCAT Location of tape 15
NUMFILES Number of files on the tape 8
TPFIRSTORB Minimum orbit number on tape 8
TPLASTORB Maximum orbit number on tape 8
TPSTART Start time on tape 13
TPSTOP Stop time on tape 13
TPALGORITHM Processing algorithm used 5
COORDSYS Map coordinate system 15
SYNOPSTART Synoptic start time 13
SYNOPSTOP Synoptic stop time 13
INCORB Orbital inclination 8
ORBPER Orbital period 8
MSCANG Maximum scan angle 8
SCNINC Scan angle increment 8
NODPRT Node procession rate 8

.LTOTAL 251

BUSINESS AND TECHNOLOGICA?. SYSTEMS, INC

FILE LEVEL
Length
Field Description (Bytes)
RECORDID Record identification 1
FILENUM Sequential file number 8
FLFIRSTORB First orbit in file 8
FLLASTORB Last orbit in file 8
FLSTART Start time of file 13
FLSTOP Stop time of file 13
FLALGORITHM Processing algorithm used 5
NUMITEMS Number of items in file
FLLEN Size of file (bytes)
EQXTIM Equator crossing time 13
EQXLNG Equator crossing longitude 8
TOTAL 93
ITEM LEVEL
Length
Field Description (Bytes)
RECORDID Record identification !
ITSTART Start time of item 13
ITSTOP Stop time of item 13
ITEM Mnemonic of item 5
NAME Description of item 30
RECNUM Physical block number of record | 8
ITALGORITHM Processing algorithm used 5
ITLEN Maximum size of item (bytes) 6
TOTAL 81

11-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

CAT LEVEL
Length
Field Description (Bytes)
RECORDID Record identification

CAT Climate parameter mnemonic 5
CATEGORY Description of cat 30
FUNCTION Method to drive cat 50
TGTAL 86

The ORACLE data base that was employed to manage the pilot climate data
consisted of five tables - a tape table, file table, item table, item
description table, and cat table. The rows in the tape table were uniquely
defined by the tapeid. This tapeid was placed in the file table also, so
that the rows in the file table were uniquely defined by a combination of
tapeid and file number. Likewise, these were placed in the item table to
uniquely identify those rows by tapeid, file number, and item. Finally,
the tapeid and file number were placed in the cat table, so that in
combination with the cat field, rows could be uniquely defined. The ITEM
field was not included here because it could be a null field. A fifth
table, the item description table, contained all of the items and their
nam.s. By placing these in a separate table, it was nct necessary to store
redundant data in the item table.

Each table is shown below. Imaged fields are denoted by an asterisk
following the column rame.

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

TAPE TABLE
Column Name | Description
TAFEID* CHAR(15) NONULL
MISSION* CHAR(15) NONULL
SENSOR* CHAR(10) NONULL
FORMAT* CHAR(10) NONULL
PROJNUM CHAR(15)
GENDATE CHAR(12)
INVDATE CHAR(8) NONULL
ARCHIVER CHAR(12)
LOCAT CHAR(15)
NUMFILES NUMBER
TPFIRSTORB* | NUMBER
TPLASTORB* NUMBER
TPSTART* CHAR(12)
TPSTOP* CHAR(12)
TPALGORITHM | CHAR(S)
COORDSYS " CHAR(15)
SYNOPSTART CHAR(12)
SYNOPSTOP CHAR(12)
INCORB NUMBER
ORBPER NUMBER
MSCANG NUMBER
SCNINC NUMBER
NODPRT NUMBER

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

FILE TABLE
Column Name Description
TAPEID* CHAR(15) NONULL
FILENUM* NUMBER NONULL

FLFIRSTORB NUMBER
FLLASTORB NUMBER

FLSTART* CHAR(12)
FLSTOP* CHAR(12)
FLALGORITHM | CHAR(S)
NUMITEMS NUMBER
FLLEN NUMBER
EQXTIM CHAR(12)
EQXLNG NUMBER
ITEM TABLE
Column Name Description
- TAPEID* CHAR(15) NONULL
FILENUM* NUMBER NONULL
ITEM* CHAR(5) NONULL
ITSTART CHAR(12)
ITsTOP CHAR(12)
RECNUM NUMBER
ITALGORITHM | CHAR(5)
ITLEN NUMBER

I1-7

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

CAT TIBLE
~f
Column Name Description
TAPEID* CHAF (15) NONULL
FILENUM* NUMBER
ITEM CHAR(5)
CAT* CI'AR(5) NONULL
FUNCTION CHAR(50)
CATEGORY CHAR(30)
RECNUM NUMBER
e -
ITEM DESCR TABLE

!
Column Name | Description
ITEM* CHAR(S) NONULL
NAME CHAR(30)

fhe design used in SEED is shown in Figure IIl.1.

diagram is described as follows.

Calc Key
Area Namelor Via Set

Record Name

Each block in .e

kEach set name is shown by the Tine connecting the owner and member of
the set. Any other important set information (i.e., sort field and/oy set
occurrence selection through location mocde of owner) is shown also. The
design was developed with a svecific set of queries in mind. Bec - of
this, there is a certain amount of redundant data in the data base. T[he

main core of data is located in the following records:

17-8

YINOCO 40
3Q0W MOILEDOT -0W T

oW

$179S

WNI-S1 ¥
\ S0

oAl Ty

ELREE

FRIED

oW
Gi~uS

ANIYI-Cip

Elgin) 1Y

TITGISN
34 01N
WaLl| hb o ssl 7y
LLI"¥94°bY NSSIW =8 (153314 405)
s3] v Qi°s§
§°98
wiv D7 3AYL"SY
2ia $Y Wb TY |
A /
Qu.oon._.:o 440 9 Qmaou 15)
- s o 7 $1S
9-hS | s 578
Lud7hYy O IN13dVLEY Lywyo4~2Yy VYOSNIS T Y
iwp | S L wvos| 74 Yoswas| Y
(19D 4205
- -
r |
[
W3LSAS |
L—— -

NOILVIN3SI¥d3d YW3IHIS G3I3S

Figure II.1

I1-9

BUSINESS AND TECHNOLOGICAL SYSTENS, INe.

* R3 _TAPEINFO contains the tape level information that is
not likely to be queried on . Examples of data in this
record are COORDSYS, SYNOPSTART, SYNOPSTOP, and
ARCHIVER.

* R5_TAPE contains the tape level information of
importance in guerying, i.e., TAPEID, MISSION, SENSOR,
etc.

* RIO_FILE contains all file level irformation.
* R11_ITEM contains the item mnemonic and description.

. R12_ITEMDATA contains the actual item information,
i.e., item start and stop times, item length, etc.

* R4_CAT contains the climate parameter mnemonic.

. R6_CATDATA contains the cat information, category and
function.

The remaining records are either redundant data included for speed of
retrieval of informatien (R1_SENSOR, R2 FORMAT, for example) or are "link”
records linking occurrences of 2 records together (R7_LINK Tinks an
occurrence of a tape record with an occurrence of cat level information).

The INGRES data base consisted of the same five tables as the ORACLE
data base. Because column types are defined differently in ORACLE and
INGRES, the tables, showing column name and type, are given below. In each
table, the multifield keys are identified with asterisks.

II-10

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

TAPE TABLE
Column Name Description
TAPEID* CHAR(15)
MISSION CHAR(15)
SENSOR CHAR(10)
FORMAT CHAR(10)
PROJNUM CHAR(15)
GENDATE CHAR(12)
INVDATE CHAR(8)
ARCHIVER CHAR(12)
LOCAT CHAR(15)
NUMFILES 1*4
TPFIRSTORB 1*4
TPLASTORB 1*4
TPSTART CHAR(12)
TPSTOP CHAR(12)
TPALGORITHM CHAR(5)
COORDSYS CHAR(15)
SYNOPSTART CHAR(12)
SYNOPSTOP CHAR(12)
INCORB 1*4
ORBPER I*4
MSCANG I*a
SCNINC 1*4
NODPRT 1*4

I1-n

BUSINESS AND TECHNOLOGICAL SYSTENS, INnC.

FILE TABLE
Column Name Description
TAPEID* CHAR(15)
FILENUM* I*4
FLFIRSTORB 1*4
FLLASTORB I*4
FLSTART CHAR(12)
FLSTOP CHAR(12)
FLALGORITHM CHAR(S)
NUMITEMS [*4
FLLEN 1*4
EQXTIM CHAR(12)
EQXLNG 1*4

ITEM TABLE
Column Name Description
TAPEID* CHAR(15)
FILENUM* 1*4
ITEM* CHAR(S)
ITSTART CHAR(12)
ITSTOP CHAR(12)
RECNUM 1*4
ITALGORITHM CHAR(5)
ITLEN 1*4

L

I1-12

BUSINESS AND TECHNOLOGICAL SYSTENMS, INC

CAT TABLE

Column Name Descriptio.
TAPEID* CHAR(15)
FILENUM* 1*4
ITEM* CHAR(S)
CAT* CHAR(S)
FUNCTION CHAR(50)
CATEGORY CHAR(30)
RECNUM I*4

ITEM DESCR TABLE

Column Name Description
ITEM* CHAR(5)
NAME CHAR (30)

I1-13

BusINESS AND TECHNOLOGICAL SYSTEMS, INC.

APPENDIX III
SEED OUERY DESCRIPTION

I11-1

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC

1.) Calc on PKEYs (5%)

2.)

A.)
B.)
c.)

D.)

Find
A.)

c.)

D.)

Calc
A.)

B.)

c.)

Read in a record from the same file used to load the data base
Form the primary key, PKEY

Using the OBTNC command, find and get the correct R6_PKEY record
(OBTNC finds and gets a record with a calculated key - PKEY)
Repeat A through C for 5% of the input records to the data base.
Mean statistics given in query table are for one iteration of
this loop.

PKEYs through OBTNU (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SIN, SDF and TIME

Set up the “using® 1ist and the "relation" list which is
necessary to use the OBTNU command

Using the OBTNU command, find all of the R6_PKEY records with the
correct MID, SID, SDF and TIME (OBTNU finds and gets a record
which meets a user-specified set of conditions)

Repeat A through C for .5% of the input records to the data

base. Mean statistics given in query table are for one iteration
of this loop.

MID, find SID, find PKEYs (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

Using the FINDC command, find the correct R1_MID record (FINDC
finds a record witnh a calculated key - MID)

Using the OBTNPO command on the set with R1_MID as owner and R4_
SID as member, find and get R4_SID records v::.i1 the correct one
is found. ({GRTNPC finds and gets a record positionally within a
set)

Using the OBTNPO command on the set with R4_SID as owner and R6_
PKEY as member, find all of the R6_PKEY records with the correct
SDF and TIME. (OBTNPO finds and gets a record positionally
within a set)

IT1-2

BUSINESS AND TECHNOLOGICAL SYSTENS, INC

8.)

5.)

6.)

E.)

Calc
A.)

C.)

D.)

Calc
A,)

B.)

D.)

Calc
A.)

B.)

Repeat A through D for .5% of the input records to the data
base. Mean statistics given in query table are for cne iteration
of this loop.

MID, find PKEYs (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

Using the FINDC command, find the correct R1_MID record [FINDC
finds a record with a calculated key - MID)

Using the OBTNPO command on the set with R1 _MID as owner and
R6_PKEY as member, find all of the R6_PKEY records with the
correct SID, SDF and TIME (OBTNPO finds and gets a record
positionally within a set)

Repeat A through C for .5% of the input records to the data
base. Mean statistics given in query table are for one jteration
of this loop.

TIME, find PKEYs (.5%)

Read in a record from the same file used to load the data bhase,
to get an MID, SID, SDF and TIME

Using the FINDC command, find the correct R2 _TIME record (FINDC
finds a record with a calculated key - TIME)

Using the OBTNFO command on the set with R2 TIME as owner and
R6_PKEY -5 member, find all of the R6_PKEY records with the
correct MID, SID and SDF (ORTNPO finds and gets a rececrd
positionally within a set)

Repeat A through C for .5% of the input records to the data
base. Mean statistics given in query table are for one iteration
of this loop.

SDF, find PKEYs (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

Using the FINDC command, find the correct R8 SDF1 record (FINDC
finds a record with a calculated key - SDF1))

IT1I-3

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

7.)

8.)

9.)

C.)

D.)

Find
A.)

B.)

c.)

£.)

Using the OBTNPO command on the set with R8 SDF1 as owner and R6_
PKEY as member, find all of the R6_PKEY records with the correct
MID, SID and TIME (OBTNPO finds and gets a record positionally
within a set)

Repeat A through C for .5% of the input records to the data

base. Mean statistics given in query table are for one iteration
of this loop.

PKEYs sequentially (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

Using the OBTNAP command, search sequentially through the data
base for all R6_PKEY records with the correct MID, SID, SDF and
TIME (OBTNAP finds and gets a record by treating the entire data
base as a seauential file)

Repeat A and B for ,5% of the input records to the data base.
Mean statistics given in query table are for one iteration of
this loop.

on MIDSID, find PKEYs (.5%)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

Form the cambination MIDSID

Using the FINGC command, find the correct R1_MIDSID record (FINDC
fimis 2 record with a calculated key - MIDSID)

Using the GBTNP) command on the set with R1_MIDSID as owner and
R6_PK:Y as member, find all of the R6_PKEY records with the
correct SDF and TIME (OBTNPO finds and gets a record positionally
within a set)

Repeat A through D for .5% of the input records to the data

base. Mean statistics given in query table are for une iteration
of this loop.

OBTNI indexed value, on PKEYs (5%)

A.)

Read in a record from the same file used to load the data base,
to get an MID, SID, SDF and TIME

I11-4

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC.

B.)

7

C.)

Using the FINDI command on the indexed .tem, find all the R6_PKEY
records with the correct MID, SID, SDF and TIME (FINDI finds an
"indexed" record)

Repeat A and B fur 5% of the input records to the data base.
Statistics given in query table are for one iteration of this
loop.

10.) Find MESSAGE sequentially (first 5%)

A.)

Using the OBTNAP command, access the "FIRST" R5 MESSAGE record in
the named area. ({0NBTNAP finds and gets a record by treating the
entire data base as a sequential file)

Repeat A above, accessing the "NEXT" R5_MESSAGE record each time
in the named area for 5% of the R5 MESSAGE records. Mean
statistics given in query table are for one iteration of this
loop.

ITI-5

BUSINESS AND TECHNOLOGICAL SYSTEMS, ING.

APPENDIX IV
POST-PUBLISHED ORACLE TEST RESULTS

This appendix is reserved for future ORACLE test results to be added
to the document as they become available.

Iv-1

BIBLIOGRAPHIC DATA SHEET

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
CR 170615

4, Title and Subtitle 5. Repc: Date
RESULTS OF DATA BASE MANAGEMENT SYSTEM June L, 1983

PARAMETERIZED PERFORMANCE TESTING REI.ATED TO GSFC 6. Performing Organization Code
SCIENTIFIC APPLICATIONS

7. Author(s) Carol H. Carchedi, Thomas L. Geugh, 8. Performing Organization Report No.
Herbert A. Huston BTS2-82-45/rd 1021

9. Performing Organization Name and Address 10. Work Unit No.

Busine~s and Technological Systems, Inc.

Aerospace Building, Suite 440 11. Contract or Grant No.

10210 Greenbelt Road NAS5-26728

Seabrook, Maryland 20706

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Adr'r~ss

NASA/Goddard Space Flight Center
Code 931
Greenbelt, Maryland 20771 14, Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This document summarizes the results of a variety of tests designed to
demonstrate and evaluate the performance of several commercially available
data base management system (DBMS) products compatibie with the Digital
Equipment Corporation VAX 11/780 computer system. The tests were performed
on the INGRES, ORACLE, and SEED DbMS pr.ducts employing applications that
were similar to scientific applications under development by NASA. The
objectives of this testing included determining the strength and weaknesses
of the candidate systems, performance trade-cffs of various design aiterna-
tives and the impact of some installation and environmental (computer
related) influences.

17. Key Words {Selected by Author(s)) 18. Distribution Statement
Benchmark VAX

DBMS
INGRES
ORACLE
SEED

19. Security Classif. {of this report} | 20. Security Classif. {of this page} 21. No. of Pages | 22. Price"
U 257

*For sale by the National Technical Information Service, Springfield, Virginia 22] 81 GSFC 25-44 (10/77)

